Agenda

Proximal gradient methods

@ Gradient descent

@ Proximal gradient method

© Prox functions

@ Subgradients

@ Convergence of proximal gradient methods



Classical gradient descent

o f cwx
o f differentiable

Choose x( and repeat
T = a1 — e Vf(rpo1) k=1,2,...

Step size rules
0ty = { cst
@ Backtracking line search [cf. Boyd and Vandenberghe]
@ Exact line search
min; f(x —tVf(x))
o Barzila-Borwein



Convergence of gradient descent

e dom(f) =R"
@ minimizer z* with optimal value f* = f(z*)
e Vf is Lipschitz continuous with L > 0
IVf(@) = ViWlz < Lllz =yl Va,y

(or IVf(z) = Vf(y)ll+ < L|lz —y| where ||.|| and || - || are dual from each
other)

If f is twice differentiable, this means V2f < LT

Convergence

Fix step size t < 1/L. Then
|z — x*]?

flaw) = < =




Convergence of gradient descent

With backtracking line search
o Initialize at £ > 0
@ Take t = [t until

flar =tV f(zr) < fze) — at]|V f(z)?

where 0 < a, 8 < 1;e. g. a=0.5

Convergence

Set tmin = min{f, %} then
o — 2*|1?

flzg) = f* < CTR?




Interpretation of gradient descent

r = x0 — tVf(x0)

—arg min, { f(an) + (9 a0}, = a0} + o~ o

f(zo) + (Vf(zo),x — x0) first-order approximation to objective

2|1z = aol? proximity term with weight -



Composite functions
min  f(z) = g(z) + h(z)

@ g cvx and diff
@ h cvx (not necessarily diff)
Examples:
Q@ h=0 — min g(z)
@ h = 1¢ ‘indicator’ of cvx set: h(x) =0 if x € C and co otherwise

min f(z) <

® h(2) = lirls |
min - g(z) + ||z

eg. g(x) = 55/ Az — b3 ]

g cvx and diff; V2g = + A*A and Vg Lipschitz with L = IIfi\II




Generalized gradient step

v = argmin{g(xo) + (Vg(xo), & — 20) + 5.} = ol + h(e))

@ quadratic approximation to g only

@ computation of gradient step — later
Examples:

@ h=0 — gradient step

e h= lc

) 1
2 = argmin {2t|x — (xg — tVg(z0))|]* + h(x)}
. 1 2
= argmingec | o 12 = (@0 = tVg (o))l
P, = Projection onto cvx set C'

x = P.(xg —tVg(xo))

this is a projected gradient step



o h(z) = ||zl

. 1
x = arg min {%CE — (wo — tVg(z0))|* + ||x||1}
= Si(xo — tVg(xo))

St: Soft-thresholding/shrinkage operator

, 1
Si(z) =arg min, - [llz = 23 + [l]]

. 1
= arg min, zz: %(zz —x5)% + a4
Zi — t Zi 2 t
[St(2)]i =40 |lzi| <t
Zi+t z < —t



Proximation gradient method |
min  g(x) + h(z)

@ Proximal operator
. 1 2
prox,, (z) = argmin,, ﬂ”m —z||* + h(z)

prox well defined if ¢ > 0 and dom(h) = R™ (unique minimizer for all z)

@ Proximal step

T = argmin {21t||ac — [0 — tVg(z0)]||* + h(m)}
= prox, (2o — tVg(zo))

@ Remarks
(I) h:]-C:>St:PC
(i) h=0= 2=z — tVg(xo)



Proximal gradient method Il

min  g(x) + h(zx)
Choose x( and repeat for k =1,2,...
Ty = proxy, ,(Te—1 — teVg(Tr_1))

Can be applied with fixed step sizes/backtracking line search

Example: Lasso

) 1
min o+l Az — bl* + |||l
Choose x(y and repeat
T = shrink(xk,l — A_ltkA*(Axk,1 — b);tk)

called Iterated Soft-Thresholding Algorithm (ISTA)



Subgradients

e f cvx

@ v is a subgradient of f at g denoted by v € 0f(z0)
If for all € dom(f)

f(@) > f(zo) + v" (x — o)
Subdifferential 9f(xg) : set of all subgradients
9f(zo) # 0

e z* minimizes f(z) iff 0 € 9f(z*)
e Remark: f diff = 0f(z) = {Vf(z)} and optimality condition is 0 = V f(z*)



Optimality conditions

min f(z) = g(x) + h(z)
x optimal < Vg(z)+v=0and v € Oh(z)

Proposition

x optimal iff x = prox,,(x — tVg(z)) for any t > 0. That is, iff x is fixed point of
update rule

Proof:

1
Fixed point < z is a minimizer of z — 2—t|\z — (z = tVg(2))|* + h(z)

< Vyg(z) +v=0and v € Oh(x)



Monotonicity |

1
vy = arg min {2 = (& = tVg(2))|* + h(2)} = 2 — tGi(x)
Optimality condition:
v =Gi(z) — Vg(x) and v € Oh(x4)

Hence,
h(zy) < h(y) + (v, 24 —y)



Monotonicity |l

£(2) < glw) + (Vg(a), = — ) + 21z — 2l + h(2)
This gives

flxy) < g(z) - t{Vg(2),G ()>+LftQ||Gt( )+ h(as)

=) @) + b

= g(x) + t{v, Gy(z t(
)+ t{v, Gz t(

= D) IGu@) P+ hw) + o, )
= gl >—t(1 - f)\|Gt<m>H2+h< )+ (v, — )
Since g(z) < g(y) + (Vy(z),z —y)

2
F(24) < F@) + Gl — ) — (1 = ) |G Vary




Lt
1-=
2

v=y = fles) < f@) - t(1- 3G

Conclusion: If t < % each step decreases objective function value unless
G¢(z) = 0. But then we're at optimum!



Convergence of proximal gradient method

@ f has an optimal solution z* and f* = f(x*)
@ g and h cvx
@ Vg Lipschitz with cst L > 0

Fix step size t <

I

o _ o — 2|2
= < == — W0
flzg) = f* < T

Similar with backtracking t < min(t, %)




Proof
0<t<1/L

Fla) < £+ Gulan)" (@ — %) = SGo(er) P

This implies

E[f (zp)—f*] <

1 * *
= 1"+ o7 w1 — 2*|* = llzn—1 — tGe(w-1) — 2*|]

2t
1
=f"+ % [lep—1 — 2*[* = |z — 2*]?]
(2 o lzo — ]2
— = 02 N
; < 275||370 | Jlop)—f* < o7k

Same analysis with backtracking because o > 1/2

Therefore

ty > tmin = min{t,3/L}
o — 2*|1?

flzg) — f* < GTR



Main pillar of analysis

We have established this useful result:
o Fixt >0 and set z;, =z — tGy(x)
o Assume f(z) < Qq/¢(z,x)
Then Yy € dom(f)

tL

Fe) < 16) +Gilohe =) —1 (1- ) G2



Philosophy: majorization—minimization

@ Find "relevant” approximation to objective such that

() f(z)=p(z,z) Vo
(i) f(z) < p(x,y) Va,y

@ Minimization scheme
x = argmin, u(z, Tp—1)

which implies p(xg, x5—1) < p(x,xp_1) Vo

flak) < plre, wr—1) < p(ep—1,2p-1) = f(Tr—1)

= minimizing sequence



Question: How to generate a good upper bound?

Generalized gradient descent operates by upper bounding smooth component by
simple quadratic term

il 4) = 9l) + (V(y), 2 = v) + ol =yl + h(a)

Special cases
@ h =0 — convergence of gradient descent
@ h = 1¢ — convergence of projected gradient descent
© g = 0 — this is proximal minimization



Proximal minimization algorithm (PMA)

min  h(x)
Generalized GD reduces to PMA. Choose xy and for k =1,2,...

1
xp = argmin{ — ||z — zx_1||* + h(z)
2ty

Set o1, = Ejgk t;

T — x* 2
h(xk)‘h*f%

@ Algorithm is better than subgradient methods but not implementable unless
h is ‘'simple’

@ Very useful when combined with duality — augmented Lagrangian methods



Subgradient methods

min h(x)
subjectto xz e C

Subgradient scheme:

Vg—1 € Oh(zK_1) and xx = Po(xp—1 — txvg—1)

Scheme is not monotone

Typical result

@ h cvx and Lipschitz, ||h(z) — h(y)|| < pllz — v
@ (' cvx and compact

oSettk:%

Then

: N diam(C)
(R ) =< 0 =




Summary

@ Generalized GD — convergence rate %

@ Subgradient methods — convergence rate ﬁ

Can we do better for non-smooth problems

min f(z) = g(z) + h(z)

with the same computational effort as generalized GD but with faster
convergence?

Answer: Yes we can - with equally simple scheme

Tpy1 = arg min Q4 (w, yx)

Note that we use yj instead of x; where new point is cleverly chosen

@ Original idea: Nesterov 1983 for minimization of smooth objective

@ Here: nonsmooth problem
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