
MATH 301: Advanced Topics in Convex Optimization Winter 2015

Lecture 26 — March 9

Lecturer: Emmanuel Candes Scribe: Hamid Javadi and Emmanuel Candes

� Warning: These notes may contain factual and/or typographic errors. Some por-
tions of lecture may have been omitted.

26.1 Overview

In this lecture we will discuss

1. examples of ADMM, and

2. consensus optimization.

Our interest is on parallel solvers that can run on ‘big data’ problems.

26.2 Solving the Lasso via ADMM

The Lasso problem is given by

minimize 1
2
‖Ax− b‖22 + λ‖x‖1 (26.1)

In order to apply ADMM to this problem we rewrite (26.1) as

minimize 1
2
‖Ax− b‖22 + λ‖z‖1

subject to x− z = 0.
(26.2)

The augmented Lagrangian with penalty parameter (1/τ) > 0 for (26.2) is

L 1
τ
(x, z, y) =

1

2
‖Ax− b‖22 + λ‖z‖1 +

1

τ
〈y, x− z〉+

1

2τ
‖x− z‖22.

Now we derive the update rules of the ADMM for this problem. We have

xk = arg min
x
L 1
τ
(x, zk−1, yk−1)

= arg min
x

{
1

2
‖Ax− b‖22 + λ‖zk−1‖1 +

1

τ
〈yk−1, x− zk−1〉+

1

2τ
‖x− zk−1‖22

}
= arg min

x

{
1

2

〈
x,

(
ATA+

1

τ
I

)
x

〉
−
〈
x,ATb+

1

τ
(zk−1 − yk−1)

〉}
=

(
ATA+

1

τ
I

)−1(
ATb+

1

τ
(zk−1 − yk−1)

)
.
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We also have

zk = arg min
z
L 1
τ
(xk, z, yk−1)

= arg min
z

{
1

2
‖Axk − b‖22 + λ‖z‖1 +

1

τ
〈yk−1, xk − z〉+

1

2τ
‖xk − z‖22

}
= arg min

z

{
1

2τ
‖xk + yk−1 − z‖22 + λ‖z‖1

}
= Sλτ (xk + yk−1).

Where Sλτ is the soft-thresholding operator. The dual update rule is

yk = yk−1 +
1

τ
(xk − zk).

Again we can see that all the steps can be done very efficiently. The ADMM steps for solving
Lasso can be seen in Algorithm 1.

Algorithm 1 ADMM for solving the Lasso problem

z0 ← z̃, y0 ← ỹ, k ← 1 //initialize

τ ← τ̃ > 0
while convergence criterion is not satisfied do

xk ←
(
ATA+ 1

τ
I
)−1 (

ATb+ 1
τ
(zk−1 − yk−1)

)
zk ← Sλτ (xk + yk−1)
yk ← yk−1 + 1

τ
(xk − zk)

k ← k + 1
end while

26.3 Consensus optimization [BPC+11]

Consider the problem of the form

minimize
∑N

i=1 fi(x), (26.3)

where fi(x) are given convex functions. fi’s can be seen as loss function for the i’th block
the training data. In order to apply ADMM we rewrite (26.3) as

minimize
∑N

i=1 fi(xi),
subject to xi − z = 0.

(26.4)

ADMM can be used to solve (26.4) in parallel. Augmented Lagrangian with penalty param-
eter t > 0 for (26.4) is

Lt(xi, yi, z) =
N∑
i=1

[
fi(xi) + 〈yi, xi − z〉+

t

2
‖xi − z‖22

]
.

Based on this, ADMM steps for solving this problem can be seen in Algorithm 2. The
ADMM steps for this problem can be seen as the following
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• Solve N independent subproblems in parallel to compute xi for i = 1, 2, . . . , N .

• Collect computed xi’s in the central unit and update z by averaging.

• Broadcast computed z to N parallel units.

• Update yi at each unit using the received z.

Algorithm 2 ADMM for consensus optimization

z(0) ← z̃, y(0) ← ỹ, k ← 1 //initialize

t← t̃ > 0
while convergence criterion is not satisfied do

x
(k)
i ← arg minxi

{
fi(xi) +

〈
y
(k−1)
i , xi − z(k−1)

〉
+ t

2
‖xi − z(k−1)‖22

}
z(k) ← 1

N

∑N
i=1

(
x
(k)
i + 1

t
y
(k−1)
i

)
y
(k)
i ← y

(k−1)
i + t(x

(k)
i − z(k))

k ← k + 1
end while

Note that the algorithm converges because we are alternating the minimization of the
augmented Lagrangian over only two variables. Letting x be the vector {xi}Ni=1, Algorithm
2 is of the form

1. x(k) = arg minx L(x, z(k−1); y(k−1))

2. z(k) = arg minz L(x(k), z; y(k−1))

3. y
(k)
i = y

(k−1)
i + t(x

(k)
i − z(k))

The point is that the first step (1) decomposes into N independent subproblems, correspond-

ing to the update x
(k)
i ← . . . for i = 1, . . . , N in Algorithm 2. Hence, general ADMM theory

ensures convergence since there are only ‘two blocks’.

26.3.1 Examples

We return to our lasso example and assume we are dealing with a very large problem in the
sense that only a small fraction of the data matrix A can be held in fast memory. To see
how the ADMM can help in this situation, we can rewrite the residual sum of squares as

‖Ax− b‖2 =
N∑
i=1

‖Aix− bi‖2

where A1, A2, . . . , AN is a partition of the rows of the data matrix by cases. One way to
reformulate the Lasso problem is this:

minimize
∑N

i=1

{
1
2
‖Aixi − bi‖22 + λi‖xi‖1

}
subject to xi = z i = 1, . . . N,

(26.5)
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where λi ≥ 0 and
∑

i λi = λ. We can now work out the x
(k)
i update in Algorithm 2. This

update asks for the solution to a (small) Lasso problem of the form

arg min
xi

{
1

2
‖Cixi − di‖2 + λi‖xi‖1

}
where CT

i Ci = AT
i Ai + tI (this does not change through iterations) and di depends on bi,

z(k) and y
(k−1)
i . Hence, each unit solves a Lasso problem and communicates the result.

A perhaps better way to work is not to separate the `1 norm and apply ADMM to

minimize
∑N

i=1
1
2
‖Aixi − bi‖22 + λ‖z‖1

subject to xi = z i = 1, . . . N,
(26.6)

In this case the update for xi is the solution to a Least-squares problem as we saw in Section
26.2: this asks for the solution to

arg min
xi

1

2
‖Cixi − di‖22

where CT
i Ci = AT

i Ai + tI as before (this does not change through iterations) and di depends

on bi, z
(k) and y

(k−1)
i . Then the update for z is of the form

z(k) = Sλτ/N

(
Avei(x

(k)
i ) + t−1Ave(y

(k−1)
i )

)
.

The update for the dual parameter is as in Algorithm 2, namely,

y
(k)
i ← y

(k−1)
i + t(x

(k)
i − z(k)).
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