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Proximal distance-like function

Basic gradient method

x+ = argminx∈C

{
f(x0) +∇f(x0)T (x− x0) +

1

2t
‖x− x0‖2

}
with extension to composite functions

Generalization: replace ‖ · ‖2 with some distance-like function

x+ = argminx∈C

{
f(x0) +∇f(x0)T (x− x0) +

1

2t
d(x, x0)

}
Extension to composite function f = g + h

x+ = argminx∈C

{
g(x0) +∇g(x0)T (x− x0) + h(x) +

1

2t
d(x, x0)

}



Minimal required properties

d(·, x0) cvx for any x0

d(·, ·) ≥ 0 and d(x, x0) = 0 iff x = x0

d is not a distance: no symmetry or triangle inequality



Bregman distance functions

Kernel h is strongly convex

Bregman distance

d(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉

Interpretation: distance above tangent line

Obeys minimal requirements

Lack of symmetry is evident

How to choose h?

Select h to fit geometry of C

Select h to fit curvature of f , i.e. can add curvature when needed (h strongly
convex on feasible set)

Simplify the projection-like computation



Examples

(1) Negative entropy over simplex ∆n = {x ∈ Rn : x ≥ 0, 1Tx = 1}

h(x) =
∑
i

xi log xi

h is strongly convex wrt to `1 norm: d(x, y) ≥ 1
2‖x− y‖

2
1 for all x, y in ∆n

d(x, y) =
∑
i

(xi log xi − yi log yi)−
∑
i

(log yi + 1)(xi − yi)

=
∑
i

(xi log(xi/yi)− xi + yi)

=
∑
i

xi log(xi/yi)

(2) Negative entropy over positive orthant

d(x, y) =
∑
i

(xi log(xi/yi)− xi + yi)



(3) Negative entropy over PSD cone

h(X) =
∑
i

λi(X) log λi(X) = tr(X logX)

and
d(X,Y ) = tr(X(logX − log Y )−X + Y )

(4) Negative entropy over {X : X � 0 and tr(X) = 1}

d(X,Y ) = tr(X(logX − log Y ))

(5) logarithmic barrier (x) = −
∑
i log xi over Rn+

d(x, y) =
∑
i

[(xi/yi − log(xi/yi)− 1]

Logarithmic barrier h(X) = − log det(X) over PSD cone

d(X,Y ) = tr(XY −1)− log det(XY −1)− n



Accelerated non-Euclidean gradient method

min f(x)
s.t. x ∈ C

f cvx with Lipschitz gradient

Auslender and Teboulle (2006) (h strongly cvx with µ ≥ 1)

Choose x0 , set v0 = x0, θ0 = 1

Loop: for k = 0, 1, 2, . . .

(a) yk = (1− θk)xk + θkvk
(b) vk+1 = argminx∈C{∇f(yk)Tx+ Lθkd(x, vk)}
(c) xk+1 = (1− θk)xk + θkvk+1

(d) θk+1 = 2

1+
√

1+4/θ2k

xk, yk, vk feasible for all h

Can be extended to composite functions



Interesting if
argminz∈C uT z + t−1d(z, v)

is computationally cheap



Interpretation: Vandenberghe

C = Rn and d(x, y) = 1
2‖x− y‖

2

vk+1 = vk − L/θk∇f(yk)

Eliminating yk and vk and with βk = θk(1− θk−1)/θk−1

xk+1 = xk + θk(vk+1 − xk)

= xk + βk(xk − xk−1)− (L/θk)∇f(xk−1 + βk(xk − xk−1))

Gradient method with two-step momentum term



Extensions

Can be used with backtracking if L is not known

Idea: satisfy key inequality in convergence proof (Nesterov (’04), Beck and
Teboulle (’09))

Extension to composite functions f = g + h: replace (b) with

vk+1 = argminx∈C{∇g(yk)Tx+ h(x) + Lθkd(x, vk)}



Complexity analysis

Theorem (Auslender Teboulle, 2006)

f(xk)− f? ≤ 4Ld(x∗, x0)

(k + 1)2

Variations and other schemes

Nesterov (2005), see ‘smoothing lecture’: gradient history + 2 prox (one
quadratic and one h based)

Tseng (2008): gradient history + 2 prox h based



Key relationship

Three-point identity

∀x, y, z : d(x, z) = d(x, y) + d(y, z) + 〈∇h(y)−∇h(z), x− y〉

Plays a crucial role in the analysis of any optimization method based on Bregman
distances

With h = 1
2‖ · ‖

2, this is

‖x− z‖2 = ‖x− y‖2 + ‖y − z‖2 + 2〈y − z, x− y〉

which played a crucial role in convergence proofs (see proximal and fast proximal
lectures)



Entropic descent algorithm (EDA)

min f(x)
s.t. x ∈ ∆n

d(x, y) =
∑
i xi log(xi/yi)

Projection step
argminz∈∆n

{uT z + t−1d(z, v)}

is solution to
min t

∑
i uizi +

∑
i zi log(zi/xi)

s.t. zi ≥ 0∑
i zi = 1

and given by

zi =
vie
−tui∑

j vje
−tuj

Convergence: since d(x?, x0) ≤ log n

f(xk)− f? ≤ 4L · log n

(k + 1)2
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