Agenda

Gradient method with non-Euclidean distances

@ Bregman distance

@ Examples

© Accelerated non-Euclidean gradient methods
@ Entropic descent algorithm (EDA)



Proximal distance-like function

Basic gradient method

s = argmin, o { fan) + ¥ o0} (e~ a0) + 5o~ ol

with extension to composite functions

Generalization: replace || - |2 with some distance-like function

Ty = argming o {f(xo) + Vf(xo)T(x —x9) + %d(a:, xo)}

Extension to composite function f =g+ h

s = argming o {alan) + Vatao) (@ = a0) + hlo) + gye)



Minimal required properties
@ d(-,zq) cvx for any xg
@ d(-,) >0 and d(z,xo) =0 iff x = x¢

d is not a distance: no symmetry or triangle inequality



Bregman distance functions

Kernel h is strongly convex

Bregman distance

d(z,y) = h(z) — h(y) — (VA(y),z —y)

Interpretation: distance above tangent line

Obeys minimal requirements

Lack of symmetry is evident

How to choose h?
@ Select h to fit geometry of C

@ Select h to fit curvature of f, i.e. can add curvature when needed (h strongly
convex on feasible set)

@ Simplify the projection-like computation



Examples

(1) Negative entropy over simplex A, = {z € R" : 2 >0, 1Tz =1}

h(z) = le log z;
i
h is strongly convex wrt to £1 norm: d(z,y) > 1|z — y||? for all z,y in A,

d(z,y) = > (w;logz; —y;logy:) — > (logy + 1)(w: — 4)

A A

= Z(Iz log(@i/yi) — @i + i)
i
=Y wilog(wi/y)
(2) Negative entropy over positive orthant

d(z,y) =Y (wilog(xi/y:) — zi + i)

K3



(3) Negative entropy over PSD cone
Z)\ )log A;(X) = tr(X log X)

and
d(X,Y)=tr(X(log X —logY) — X 4+7Y)

(4) Negative entropy over {X : X = 0 and tr(X) = 1}
d(X,Y)=tr(X(log X —logY))

(5) logarithmic barrier () = — 5, logx; over R"}

d(z,y) = > [(xi/yi — log(xi/y:) — 1]

Logarithmic barrier h(X) = —logdet(X) over PSD cone

d(X,Y) =tr(XY 1) —logdet(XY 1) —



Accelerated non-Euclidean gradient method

f cvx with Lipschitz gradient

Auslender and Teboulle (2006) (h strongly cvx with p > 1)

@ Choose xq , set vg = xg,0p =1
o Loop: for k=0,1,2,...

(@) gk = (1 = O)wp, + Ovp

(b) vg41 = argminmeC{Vf(yk)Tx + Lbd(x,vi)}

(¢) xgy1 = (1 — gk)xk + Ok Vk+1
)

(d) Ops1 = W

Tk, Yk, Uk feasible for all h

Can be extended to composite functions



Interesting if
argmin, . u’z+t"td(z,v)

is computationally cheap



Interpretation: Vandenberghe

C =R" and d(z,y) = 3]z —y|?
Vg1 = vk — L/OxV f(yr)
Eliminating yx and vg and with B = 05 (1 — 0;_1)/0k—1

Ty1 = Tk + Ok (Ve — 2p)
=k + Br(er — xr—1) — (L/O)Vf(ap—1 + Be(zr — z1-1))

Gradient method with two-step momentum term



Extensions

@ Can be used with backtracking if L is not known

Idea: satisfy key inequality in convergence proof (Nesterov ('04), Beck and

Teboulle ('09))

@ Extension to composite functions f = g + h: replace (b) with

U1 = argming o {Vg(yr) "z + h(z) + LOyd(z,vy)}



Complexity analysis

Theorem (Auslender Teboulle, 2006)

4Ld(x*, o)

flze) — f* < CEE)E

Variations and other schemes

@ Nesterov (2005), see ‘smoothing lecture’: gradient history + 2 prox (one
quadratic and one h based)

@ Tseng (2008): gradient history 4+ 2 prox h based



Key relationship

Three-point identity

Vz,y,z: d(z,z) = d(z,y) + d(y, 2) + (Vh(y) — Vh(z),z — y)

Plays a crucial role in the analysis of any optimization method based on Bregman
distances

With h = 3| - |2, this is
lz = 2[* = [lz = ylI* + [ly — 21> + 2(y — 2,2 — )

which played a crucial role in convergence proofs (see proximal and fast proximal
lectures)



Entropic descent algorithm (EDA)
min f(z)

s.t. r e,

o d(z,y) = >, wilog(x;/y;)
@ Projection step
argmin_cn {u’z+t1d(z,v)}

is solution to _
min > wizi + >, zilog(zi /)

s.t. z; >0
2iz=1
and given by
vye Tt
S T
%, vyt
e Convergence: since d(x*,zg) < logn
4L -logn

f(xk?)_f*g (k+1)2
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