
Math 2a Handout

Math 2a Homework 7 Solutions

Problem 1. (Moore & McCabe, 8.48) Let p1 denote the proportion of men with normal chromosomes that
have a criminal record, and letp2 denote the proportion of men with abnormal chromosomes that have a
criminal record. Our hypotheses are

H0 : p1 = p2

Ha : p1 < p2.

In the notation of Moore & McCabe we haven1 = 4096 and p̂1 = 381/4096 = 0.0930, while we have
n2 = 28 andp̂2 = 8/28 = 0.2857. We setD = p̂1 − p̂2 = −0.1927 and compute

p̂ =
381 + 8
4124

= 0.0943

and

SEDp =

√
0.0943× 0.9057×

(
1

4096
+

1
28

)
= 0.0554.

Ourz statistic is given by

z =
−0.1927
0.0567

= −3.4783.

Therefore ourP value is
P (Z ≤ −3.4783) = 0.0003.

Since ourP value is so small we confidently rejectH0 in favor of Ha. That is, we conclude that men with
abnormal chromosomes are more likely to have a criminal record. However, one cannot conclude from this
that chromosome abnormalities are a direct cause of increased criminality. There may be many other factors
associated with chromosome abnormalities, that are not discussed in this study, which cause an increase in
criminality. For example people with chromosome abnormalities may receive less education or have less
money than the rest of the population.

Problem 2. (a) Of the population of Jewish people dying within a week of Passover, letp denote the
proportion dying before Passover. Our hypotheses are

H0 : p = 1/2
Ha : p < 1/2.

For our sample of size 1919 we compute

p̂ =
922
1919

= 0.4805.

Ourz statistic is given by

z =
0.4805− 0.5√

0.52

1919

= −1.7084.

OurP value is therefore
P (Z ≤ −1.7084) = 0.044.
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Thus we reject the null hypothesis at all significance levels≥ 0.044. This sample gives evidence toward
rejecting the null hypothesis.

(b) We repeat the hypothesis test from part (a) with the population of men with Chinese and Japanese
ancestry who die within a week of Passover. We takep to be the proportion of such people dying before
Passover. Again our hypotheses are

H0 : p = 1/2
Ha : p < 1/2.

For our sample of size 852 we compute

p̂ =
418
852

= 0.4906.

Ourz statistic is given by

z =
0.4906− 0.5√

0.52

852

= −0.5488.

OurP value is therefore
P (Z ≤ −0.5488) = 0.29.

With such a highP value we do not have sufficient evidence to reject the null hypothesis.

(c) Presumably there are not too many men of Chinese or Japanese ancestry who are Jewish. Thus, we have
no reason to expect the alternative hypothesis to hold in part (b) of this problem. In particular if we had
computed a smallP value in part (b) then this would lead us to suspect that there may be other, non-Jewish,
factors that cause more people to die the week after Passover than the week after.

Problem 3. LetX have a binomial distribution withn trials and probabilityp of success. In order to compute
the maximum likelihood estimate forp we need to find the value ofp which maximizes the probability
P (X = x | p) for each possible outcomex. Since the distribution is binomial we have

P (X = x | p) =
(

n
x

)
px(1− p)n−x.

It is clear that ifx = 0 this function is maximized whenp = 0 and ifx = n then it is maximized whenp = 1.
Now suppose that1 ≤ x ≤ n − 1. With x fixed, it is clear thatp maximizes the functionP (X = x | p) if
and only if maximizes the function

g(p) = px(1− p)n−x.

Differentiatingg with respect top gives

g′(p) = xpx−1(1− p)n−x − (n− x)px(1− p)n−x−1

= px−1(1− p)n−x−1(x− np).

Thus if g′(p) = 0 thenp = 0, 1 orx/n. Clearly the functiong(p) is not maximized whenp = 0 or 1, since
in both these casesg(p) = 0 (recall we are assuming thatx 6∈ {0, n}). Since our functiong is continuous
and non-negative on[0, 1] we deduce that the maximum occurs whenp = x/n. Thus we see that for all
values ofx, the maximum likelihood estimate forp is x/n. Hence as a function of the random variableX,
the maximum likelihood estimate forp is X/n.
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Suppose now thatn = 10 andX = 5. The log-likelihood function,̀(p), is given by the formula

`(p) = log(P (X = 5 | p)) = log
((

10
5

)
p5(1− p)5

)
.

This function is plotted below.
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Problem 4. Let N denote the total number of animals. Of theseN , 100 are tagged. Suppose we recapture
50 animals, we letX denote the random variable that gives the number of these 50 animals which are
tagged. We will assume that the 100 animals chosen to be tagged were chosen uniformly at random from
the population, and that the second sample of 50 animals was also chosen uniformly at random from the
population. Under these assumptionsX has a hypergeometric distribution (cf Example I on page 13 of
Rice). Thus the probability ofX = 20 is given by the formula

(
100
20

)(
N − 100

30

)

(
N
50

) .

Viewed as a function ofN this is the likelihoodlik(N). We note that from the data we have we necessarily
haveN ≥ 130. We wish to find the value ofN which maximizes this function. We have

lik(N)
lik(N − 1)

=
(N − 100)(N − 50)

N(N − 130)
.

Now lik(N) > lik(N − 1) if and only if this ratio is greater than 1, which is if and only if

(N − 100)(N − 50) > N(N − 130)

N2 − 150N + 5000 > N2 − 130N

5000 > 20N.
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Therefore we see thatlik(N) > lik(N − 1) if and only if N < 250. In the same way we find that
lik(N) < lik(N − 1) if and only if N > 250. Hencelik(N) is maximized whenN = 249 or 250. Thus we
estimate the population to be 250 (or 249).

Problem 5. (a) LetX1 be the random variable that counts the number of starchy and green plants,X2 the
random variable that counts the number of starchy and white plants,X3 andX4 are defined similarly. Then
the function we wish to maximize is

f(1997, 906, 904, 32 | θ)

wheref(X1, X2, X3, X4 | θ) is the joint distribution of theXi. This distribution is multinomial and we
have

f(1997, 906, 904, 32 | θ) =
3839!

1997!906!904!32!

(
2 + θ

4

)1997 (
1− θ

4

)906 (
1− θ

4

)904 (
θ

4

)32

.

Clearly, maximizing this function is equivalent to maximizing the function

g(θ) = (2 + θ)1997(1− θ)906(1− θ)904θ32.

Taking logs this is equivalent to maximizing the function

h(θ) = log g(θ) = 1997 log(2 + θ) + 906 log(1− θ) + 904 log(1− θ) + 32 log θ.

Differentiatingh with respect toθ and multiplying by(2 + θ)(1 − θ)θ we find that the derivative ofh
vanishes precisely if

1997(1− θ)θ − 906(2 + θ)θ − 904(2 + θ)θ + 32(2 + θ)(1− θ) = 0

which is if
−3839θ2 − 1655θ + 64 = 0.

The roots of this polynomial areθ = −0.4668 andθ = 0.0357. Since we are given0 < θ < 1 we see that
the maximum likelihood estimate forθ is given byθ̂ = 0.0357.

(b) In order to construct such an interval we need to computeI(θ̂) = I(0.0357). We recall that

I(θ) = −E

[
∂2

∂θ2
log f(X1, X2, X3, X4 | θ)

]
.

Now we have

f(X1, X2, X3, X4 | θ) =
3839!

X1!X2!X3!X4!

(
2 + θ

4

)X1
(

1− θ

4

)X2
(

1− θ

4

)X3
(

θ

4

)X4

and thereforelog f(X1, X2, X3, X4 | θ) is given by

log 3839!−
4∑

i=1

(log Xi!−Xi log 4) + log(2 + θ)X1 + log(1− θ)X2 + log(1− θ)X3 + log(θ)X4.

Thus we have

∂2

∂θ2
log f(X1, X2, X3, X4 | θ) = − 1

(2 + θ)2
X1 − 1

(1− θ)2
X2 − 1

(1− θ)2
X3 − 1

θ2
X4.
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EachXi is a binomial distribution with the appropriate parameters we compute

I(θ) = −E

[
∂2

∂θ2
log f(X1, X2, X3, X4 | θ)

]
=

3839
4

(
1

(2 + θ)
+

1
(1− θ)

+
1

(1− θ)
+

1
θ

)
.

The estimated standard error ofθ̂ is given by

sθ̂ =
1√
I(θ̂)

=
1√

25364.65
= 0.0058.

An approximate 95% confidence interval forθ is given byθ̂ ± 1.96sθ̂, or (0.024, 0.047).

(c) We have

E

(
4X1

n
− 2

)
=

4
n

E(X1)− 2 = θ

and

E

(
4X4

n

)
=

4
n

E(X4) = θ.

Hence these are both unbiased estimates ofθ. We have

Var

(
4X1

n
− 2

)
=

16
n2

Var(X1) =
4− θ2

n

and

Var

(
4X4

n

)
=

16
n2

Var(X4) =
(4− θ)θ

n
.

The asymptotic variance of the maximum likelihood estimate is given by

− 1
E[`′′(θ)]

which as computed above is given by the formula

[
n

4

(
1

(2 + θ)
+

1
(1− θ)

+
1

(1− θ)
+

1
θ

)]−1

.

This simplifies to give the asymptotic variance of the maximum likelihood estimate as

2θ(1− θ)(2 + θ)
(1 + 2θ)n

.

We note that the asymptotic variance of the maximum likelihood estimate forθ is less than the two variances
computed above for all possible values ofθ.
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