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1 Outline

Agenda: Uncertainty Principle

1. Weyl-Heisenberg Uncertainty Principle

2. Quantum mechanical interpretation

Last Time: Motivated by the boxcar function, whose Fourier transform is not summable, we
introduced the space of square-integrable functions L2(R). We proved the Parseval-Plancherel
theorem, which shows the Fourier transform preserves the L2-inner product and is therefore an
isometry (modulo a factor 2π). Using this result, we were able to extend the Fourier transform to
L2(R) and thus make sense of the inverse Fourier transform of the boxcar function as a square-
integrable function. The properties we proved also apply to this extension, with the remark that
some equalities hold almost everywhere. We also defined the Fourier transform in higher dimensions
by simply iterating the single-variable transform.

2 Weyl-Heisenberg’s Uncertainty Principle

The uncertainty principle is commonly known in physics as saying that one cannot know simultane-
ously the position and the momentum of a particular with infinite precision. In fact, this statement
is an implication of that mathematical observation that f and f̂ cannot both be concentrated. This
is something we can intuitively see from some examples. For instance, our calculations involving
Gaussians (Lecture 1) revealed that increasing or decreasing the standard deviation in the time (or
spatial) domain has the opposite effect in the frequency (or Fourier) domain. Fig. 1 illustrates this
phenomenon. Taking this example to the extreme cases of 0 or infinite standard deviation gives
the delta function in one domain and the constant function in the other. The former is completely
localized, while the latter is completely delocalized.

Even without these examples, one can initially understand the uncertainty principle from the
identity

F (t) = af(at) ⇔ F̂ (ω) = f̂(ω/a).

That is, dilating (compressing) time is equivalent to compressing (dilating) frequency. What the
uncertainty principle does is provide a precise, quantitative statement of this notion.
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Time domain: The blue curve corresponds to
a signal f1 concentrated in time, whereas the red
curve corresponds to a signal f2 spread in time.
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Frequency domain: The Fourier transform f̂1
is spread in frequency, whereas the Fourier trans-
form f̂2 concentrates in frequency.

Figure 1: Visual evidence of the uncertainty principle

To state the result, we need to make a definition. For f ∈ L2(R), define the spread of f to be

σ2(f)
4
= inf

t0∈R

1

‖f‖2

∫
(t− t0)2|f(t)|2 dt.

We can interpret this quantity in probabilistic terms by noting that p(t) = |f(t)|2/‖f‖2 is a prob-
ability density function, as

(i) p(t) ≥ 0,

(ii)
∫
p(t) dt = 1.

Therefore, one can recognize σ2(f) as the variance of a random variable X with density p(t), where
the minimizing t0 is exactly the mean

t0 = EX =

∫
tp(t) dt.

Then σ(f) is, of course, the standard deviation of X. Similarly, q(ω) = |f̂(ω)|2/‖f̂‖2 is the density
of random variable Y having mean

ω0 = EY =

∫
ωq(ω) dω

and standard deviation σ(f̂). With this notation, we can now state the uncertainty principle:

Theorem 1 (Weyl-Heisenberg Uncertainty Principle). If f ∈ L2(R) is not identically 0, then

(i) σ(f)σ(f̂) ≥ 1/2.
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(ii) Equality holds if and only if f is a translation and modulation of a Gaussian function.

Thus, in terms of simultaneous time and frequency concentration, Gaussians are maximal with
respect to mean squared-deviation.

Proof. Let us begin with some simplifying reductions. First, we may assume that X from above is
centered (EX = 0), since translations and modulations do not affect spread:

F = f(t+ t0) ⇒ σ2(F ) = σ2(f) and σ2(F̂ ) = σ2(eiωt0 f̂) = σ2(f̂).

Second, we may assume that Y is also centered, for the same reason:

F (t) = e−iω0tf(t) ⇒ σ2(F ) = σ2(f) and σ2(F̂ ) = σ2(f̂(ω + ω0)) = σ2(f̂).

Third, f by f/‖f‖ does not change spread, and the density functions p(t) and q(ω) are left un-
changed. So we may assume f has norm 1. Numerically, our assumptions tell us

(i)
∫
t|f(t)|2 dt =

∫
ω|f̂(ω)|2 dω = 0, and

(ii)
∫
|f(t)|2 dt = 1.

Finally, smooth functions are dense in L2(R), and the Fourier transform preserves L2-norm (modulo
a factor of 2π). So it suffices to demonstrate the uncertainty principle for smooth, in particular
differentiable, functions.

Now we will express σ(f̂) in terms of f . Note that f ′(t)
F−→ iωf̂(ω), and then the Parseval-Plancherel

theorem yields

σ2(f̂) =
1

‖f̂‖2

∫
ω2|f̂(ω)|2 dω =

1

2π

∫
|iωf̂(ω)|2 dω =

∫
|f ′(t)|2 dt,

where we used that ‖f‖2 = 1 implies ‖f̂‖2 = 2π. Consequently, the uncertainty principle is
equivalent to ∫

t2|f(t)|2 dt
∫
|f ′(t)|2 dt ≥ 1

4
, (1)

meaning it is also a statement about a trade-off between concentration and regularity. Namely, a
function cannot simultaneously be very concentrated and have small derivatives (in the L2 sense).

Although this may seem surprising, the uncertainty principle is nothing other than the Cauchy-
Schwarz inequality, which states that for g, h ∈ L2(R),∣∣∣∣∫ g(t)h(t) dt

∣∣∣∣ = |〈g, h〉| ≤ ‖g‖‖h‖ =

√∫
|g(t)|2 dt

√∫
|h(t)|2 dt.

Following Weyl’s proof (see [2], p. 393), we assume that |f(t)|2 decays faster than 1/t at infinity:

t|f(t)|2 → 0 as |t| → ∞. (2)
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When f ′ ∈ L2(R), (2) holds; the verification is technical, and the interested reader can find it at
the end of the proof. When f ′ /∈ L2(R), we have σ(f̂) = ∞, and so the uncertainty inequality
certainly holds. Apply Cauchy-Schwarz to g(t) = tf(t) and h(t) = f ′(t). Since ‖g‖ = σ(f) and
‖h‖ = σ(f̂), we have ∣∣∣∣∫ tf(t)f ′(t) dt

∣∣∣∣ ≤ σ(f)σ(f̂).

We also have ∣∣∣∣∫ tf(t)f ′(t) dt

∣∣∣∣ ≤ σ(f)σ(f̂)

and so ∣∣∣∣∫ tf(t)f ′(t) +

∫
tf(t)f ′(t) dt

∣∣∣∣ ≤ 2σ(f)σ(f̂)

Now integration by parts gives∫
tf(t)f ′(t) dt+

∫
tf(t)f ′(t) dt =

∫
t
d

dt
|f(t)|2 dt

= t|f(t)|2
∣∣∞
−∞ −

∫
|f(t)|2 dt

= −1. (from (2) and (ii))

We have thus shown
σ(f)σ(f̂) ≥ 1/2.

Equality holds in Cauchy-Schwarz if and only if g ∝ h. So the uncertainty principle is satisfied
with equality if and only if tf(t) ∝ f ′(t). In this case, one can solve the differential equation

f ′(t) = − t

σ2
f(t) (3)

to see
f(t) = f(0)e−t

2/2σ2
.

Since we allow translations, modulations, and rescalings (i.e. undoing our reductions from the
beginning), in general we have

f(t) ∝ e−iω0te−
(t−t0)

2

2σ2 .

That is, f is a modulation and translation of a Gaussian function, as claimed.

Remark 1: Assume f ∈ L2(R) is differentiable, with f ′ ∈ L2(R). Verification of (2) proceeds as
follows: Suppose against the claim that there exists ε > 0 such that |t||f(t)|2 > ε for arbitrarily
large |t|. By possibly replacing f(t) with f(−t), we may assume this holds for arbitrarily large
positive t. Since f ′ ∈ L2(R), we may choose t so large that∫ ∞

t
|f ′(u)|2 du ≤ 1

4
.

Applying Cauchy-Schwarz, we find that for any t′ ≥ t,

|f(t′)− f(t)|2 =

∣∣∣∣∣
∫ t′

t
f ′(u) du

∣∣∣∣∣
2

≤

(∫ t′

t
|f ′(u)| du

)2

≤ (t′ − t)
∫ t′

t
|f ′(u)|2 du.
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So for t′ ∈ [t, t+ ε/t],

|f(t′)− f(t)|2 ≤ ε

t
· 1

4
.

Hence

|f(t′)| ≥ |f(t)| − 1

2

√
ε

t
>

1

2

√
ε

t

for such t′. It follows that∫ ∞
t

u2|f(u)|2 du ≥
∫ t+ ε

t

t
u2|f(u)|2 du >

∫ t+ ε
t

t
t2 · 1

4
· ε
t
dt =

ε2

4
. (4)

But f ∈ L2(R), and so

lim
t→∞

∫ ∞
t

u2|f(u)|2 du = 0.

Therefore, (4) is a contradiction.

Remark 2: If the RHS of (3) were given positive sign, f(t) would be an exponential with positive
exponent and thus not in L2(R).

Remark 3: We can verify directly that Gaussians satisfy the uncertainty principle with equality:

f(t) = e−t
2/2 =⇒ |f(t)|2 = e−t

2
=⇒ σ2(f) =

1

2
,

and

f̂(ω) =
√

2πe−ω
2/2 =⇒ |f̂(ω)|2 = 2πe−ω

2
=⇒ σ2(f̂) =

1

2
.

Indeed,

σ2(f)σ2(f̂) =
1

4
.

3 Quantum mechanical interpretation

Let us consider the description of a simple physical system, such as an electron. From a classical
point of view, the physical state of the electron at any instant is characterized by six quantities,
that is, its three position coordinates, and its three momentum coordinates. In other words, to
each time instant we associate a point in the phase space. Physical quantities of interest, such as
the energy, can be measured from these quantities. However, in quantum mechanics the physical
description is characterized by a state vector,

State vector: |ψ〉 ∈ H,

where H is an infinite-dimensional Hilbert space. The quantities of interest are represented by
observables, which are symmetric operators acting on the Hilbert space

Observable: A ∈ L(H), A∗ = A.

For instance, the position X and momentum P are observables. In classical mechanics, these
only extract the position coordinates or momentum coordinates from a point in the phase space,
but in quantum mechanics they are symmetric linear operators acting on H.
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Since they are symmetric, they can be diagonalized and have a complete set of eigenvectors and
real eigenvalues. We can define

|x〉 eigenvector of X with eigenvalue x, that is, X|x〉 = x|x〉,

and
|p〉 eigenvector of P with eigenvalue p, that is, P |p〉 = p|p〉.

As usual, we let eigenvectors be normalized. Since {|x〉}x and {|p〉}p are both complete orthonormal
sets, we can decompose the identity operator as

I =

∫
dx|x〉〈x| =

∫
dp|p〉〈p|.

Fundamental postulate of Quantum Mechanics: For an observable A with eigenstates |a〉
and a state |ψ〉, the outcome of measuring A is a with probability |〈a|ψ〉|2 and the system transitions
to the state |a〉, that is,

|ψ〉 measure A−−−−−−−−→ |a〉 with probability |〈a|ψ〉|2.

An experiment that shows this behavior is Stern-Gerlach experiment. For a description of this
experiment and its significance, you can see http://en.wikipedia.org/wiki/Stern-Gerlach_

experiment. The original paper by Otto Stern and Walther Gerlach (in German) can be found
here http://link.springer.com/article/10.1007%2FBF01326984. Also the fundamental pos-
tulate is part of what is known as the Copenhagen interpretation of quantum mechanics
(see http://en.wikipedia.org/wiki/Copenhagen_interpretation#Principles).

3.1 Uncertainty relations

Since the outcomes of measuring an obsevable are random variables, we can define the expectation
of an observable. Let |a〉 denote the set of eigenvectors of the observable A and assume the system
under consideration is on a state |ψ〉. Then its expected value is

ā = 〈A〉 =

∫
da a|〈a, ψ〉|2

and its variance

〈(∆A)2〉 =

∫
da (a− ā)2|〈a, ψ〉|2.

Heisenberg’s uncertainty relation states that:

〈(∆X)2〉〈(∆P )2〉 ≥ (~/2)2 (5)

with

〈(∆X)2〉 =

∫
dx (x− x̄)2|〈x, ψ〉|2

〈(∆P )2〉 =

∫
dp (p− p̄)2|〈p, ψ〉|2.
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In other words, the product of standard deviations is at least ~/2, where ~ ≈ 1.05 10−34 is the
reduced Planck constant h/2π.

As a remark, 〈x, ψ〉 is called the the wave function and often denoted by Ψ(x). These are the
coefficients of our state |ψ〉 in the basis of eigenvectors for X. Clearly

∫
|Ψ(x)|2 dx = 1 and |Ψ(x)|2

is usually interpreted as the probability finding the system (say, an electron) on an (infinitesimal)
neighborhood of x.

To see why Heisenberg’s uncertainty relation holds, we make use of this:

Claim 2. If |x〉 is an eigenstate of X with eigenvalue x and, likewise, |p〉 is an eigenstate of P
with eigenvalue p, then the dot product obeys

〈x, p〉 =
1√
2π~

e
i
~px.

Define the wave function Φ(p) in momemtum space via Φ(p) = 〈p, ψ〉. Since |ψ〉 =
∫
|x〉〈x, ψ〉 dx,

Φ and Ψ are related by

Φ(p)︸︷︷︸
wave function in momentum space

= 〈p|ψ〉

=

∫
〈x|ψ〉〈p|x〉 dx

=
1√
2π~

∫
Ψ(x)︸ ︷︷ ︸

wave function in position space

e−
i
~px dx.

Similarly, we can write

Ψ(x)︸ ︷︷ ︸
wave function in position space

= 〈x|ψ〉

=

∫
〈p|ψ〉〈x| p〉 dx

=
1√
2π~

∫
Φ(p)︸︷︷︸

wave function in momentum space

e
i
~px dp.

The Fourier transform arises naturally, and can be thought as a change of variables between
position space and momentum space.

Hence, we can write uncertainties about position and momemtum as

〈(∆X)2〉 =

∫
(x− x̄)2|Ψ(x)|2 dx

〈(∆P )2〉 =

∫
(p− p̄)2|Ψ̂(p/~)|2 dp;

from here, Theorem 1 proved earlier gives Heisenberg’s uncertainty relation (5).
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3.2 Momemtum

We need to argue in favor of Claim 2, and in order to do this, we introduce the momemtum operator.
We begin by considering a special class of maps acting on states, the translation map U(a) for
a ∈ R defined as

U(a)|x〉 7→ |x+ a〉.

This family of maps defines a group. We can consider its behavior for small δa, that is

U(δa) = I − i

~
Pδa+ o(δa2).

The operator appearing on the first-order term of the above expansion is by definition the momen-
tum operator. Roughly speaking, the momentum operator causes an infinitesimal displacement
on a physical state. Informally,

U(δa)|ψ〉 −→ Ψ(x) = Ψ(x)−Ψ′(x)δa+ o(δa2),

and consequently the momentum operator is such that Ψ(x) 7→ −i~ d
dxΨ(x). Using our notation,

its action on a state |ψ〉 is given by

P |ψ〉 = −i~
∫ (

d

dx′
〈x′|ψ〉

)
|x′〉 dx′.

With |ψ〉 = |p〉 and using P |p〉 = p|p〉, this gives

p|p〉 = −i~
∫ (

d

dx′
〈x′| p〉

)
|x′〉 dx′.

Taking the dot product with the bra 〈x| gives

p〈x| p〉 = −i~
∫ (

d

dx′
〈x′| p〉

)
〈x|x′〉 dx′ = −i~ d

dx
〈x| p〉.

This is a differential equation with solution

〈x| p〉 =
1√
2π~

e
i
~px,

and consequently the eigenstates of the momentum represented in the position basis are complex
exponentials with (spatial) frequency given by the momentum eigenvalue p.

3.3 Heisenberg’s original formulation

In his 1927 paper [1], Heisenberg gave a slightly different formulation of all of this. First note that
the mean outcome when applying A is given by1

〈A〉 = 〈ψ|A|ψ〉 = 〈ψ|A
(∫

da|a〉〈a|
)
|ψ〉 =

∫
da〈ψ|A|a〉〈a|ψ〉 =

∫
da a|〈a, ψ〉|2.

1In linear algebra, we would write 〈ψ|A|ψ〉 as ψ∗Aψ.

8



Set
∆A = A− 〈A〉I,

so that
〈(∆A)2〉 = 〈A2〉 − 〈A〉2,

is just the variance of the outcome as before. Last, the commutator or Lie bracket is

[A,B] = AB −BA,

which is a measure, in some sense, of how incoherent the observables A and B are.

Theorem 3 (Heisenberg (1927)). For a state |ψ〉 and any observables A and B we have

〈(∆A)2〉〈(∆B)2〉 ≥ 1

4
|〈[A,B]〉|2.

Proof. Not surprisingly, this is the Cauchy-Schwarz inequality in disguise. First, note that it suffices
to assume that 〈A〉 = 〈B〉 = 0 (you do this part). Then setting |u〉 = A|ψ〉 and v = iB|ψ〉, we have

〈(∆A)2〉〈(∆B)2〉 = 〈ψ|A2|ψ〉〈ψ|B2|ψ〉
= ‖u‖2‖v‖2

≥ |Re{〈u, v〉}|2

=
1

4
|〈u, v〉+ 〈v, u〉|2

=
1

4
|〈ψ|AB −BA|ψ〉|2

=
1

4
|〈[A,B]〉|2.

Claim 4. We have
[X,P ] = i~ I.

Hence, |〈[X,P ]〉|2 = ~2, from where we obtain

〈(∆X)2〉〈(∆P )2〉 ≥ ~2

4
.

Proof. We compute the action of XP in the basis of eigenstates of X, and recall that X|x〉 = x|x〉
and P |ψ〉 = −i~

∫
d
dx〈x, ψ〉|x〉 dx. On the one hand,

XP |ψ〉 = −i~
∫
x
d

dx
(〈x, ψ〉) |x〉 dx

while on the other

PX|ψ〉 = −i~
∫

d

dx
(x〈x, ψ〉) |x〉 dx.

It thus follows that

[X,P ]|ψ〉 = i~
∫ (
−x d

dx
〈x, ψ〉+

d

dx
(x〈x, ψ〉)

)
|x〉 dx = i~

∫
〈x, ψ〉|x〉 dx = i~|ψ〉.
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