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Preface

These class notes complement the class textbook Numerical Linear Algebra
by Trefethen and Bau. They do not suffice in themselves as study material;
it is only in combination with designated portions of the textbook that you
have a complete picture of the material covered. The notes also show the
order in which the subjects are taught in class.






Chapter 1

Preliminaries

This chapter contains an expanded discussion of selected concepts introduced
in Lecture 1 of the textbook.

A vector x of dimension n is an n-tuple of numbers z; with 1 < j < n.
The z; are called the components of x. When the z; are real, one can think
of the vector x as either a point in the abstract space R", or equivalently the
arrow pointing from the origin to that point, and the geometrical intuition
you have about the case n = 3 is perfectly adequate. Note that sometimes
people (e.g. physicists) prefer to be more careful about the definition of
vector, and say that it should be defined independently of a basis, but in this
course we will simply identify a vector with its components in a basis. (The
notion of basis will be explained later.)

Am m-by-n matrix A is an array of numbers A;;, where the subscript
i indexes the rows (1 < i < m) and j indexes the columns (1 < j < n).
The result of the matrix-vector product A times x is the vector b whose
components b; are given by the sum

j=1

In short, b = Ax. In matrix notation, this also reads

by Ay o Ay, T

bm Aml ttt Amn Tn
Notice that the components of z and b have been put in a column: when
matrices are around we will almost always view a vector as being a column
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vector, or in other words as a n-by-1 matrix. We need to transpose it in
order to obtain a row vector: z' is defined as the 1-by-n matrix

(l'l, ce ,acn).

You should become familiar with switching between the index notations and
the matrix notations. For instance, notice the role of the free index ¢ and
the dummy (or summation) index j. Dummy indices can be renamed. Any
free index in the left-hand side of an expression also needs to appear as a
free index in the right-hand side.

Many problems in science engineering can be cast as linear systems of
equations, or perhaps simplified in order to be cast as linear systems. In
turn, one can view such systems in matrix notation as Axr = b and the
problem is to find x given the matrix A and the vector b.

The components x; of a vector, or the entries A;; of a matrix are usually
real-valued, but things are not much different when they are complex-valued,
so the Trefethen-Bau textbook takes the general viewpoint of considering
complex numbers. Even if the entries of a matrix are real-valued, com-
plex numbers often come back through the back door when we calculate its
eigenvalues (discussed later), so it’s a good idea to be familiar with complex
numbers. We reserve the word “scalar” for either a real number or a complex
number. If you are confident about complex numbers, skip the next section.

1.1 A short review of complex numbers

Square roots of negative numbers are forbidden in the usual calculus of real
numbers, so they have long puzzled and posed a problem to mathematicians.
It was only in the mid 1800s that it was recognized that such things could no
longer be avoided, for instance in computing the roots of polynomials. The
consensus that emerged was to denote by ¢ the imaginary unit, work with
the abstract law

and define the two square roots of —1 as £i¢. Like for negative numbers,
familiarity would do the rest to make this concept concrete.

The choice of letter i is commonplace in math and physics, and I apologize
in advance to the engineers who use the letter j instead.

Complex numbers are then defined as linear combinations of real and
imaginary numbers, like a + b where a and b are real. The number a is
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called the real part and b is called the imaginary part. In the field of complex
numbers C, any polynomial of degree n has exactly n roots, possibly multiple.
This result is the fundamental theorem of algebra.

Graphically, it is standard to think of a complex number z = a + b
as a vector with two components a and b, and represent it in the plane
R2. Thus the z axis is the real axis, and the y axis is the imaginary axis.
Addition or subtraction of complex numbers is defined in an obvious manner
through addition or subtraction of the real and imaginary part respectively;
this corresponds to the standard rules of addition and subtraction of vectors
in vector calculus. The peculiarity of complex numbers is the nontrivial
multiplication law

(a +ib)(c + id) = ac + ibc + iad + i*bd = ac — bd + i(bc + ad)

that has no equivalent in standard vector calculus. We will come back later to
the notion of dot product for real vectors, which is a very different operation:

(Z> . (ccl) —ac+ b,

Since complex numbers are identified to vectors, we can talk about the
modulus p as being the length of that vector,

p=Va*+ b? (Pythagorean theorem),

and the argument 6 as the angle made with the positive real axis,
b

tanf = —.

a
The modulus is also denoted as p = |z|. The couple (p,8) is the polar
decomposition of the complex number a + ib.

The complex conjugate of a number z = a + ib where a and b are real, is
simply a—ib and is denoted as z. It is easy to check (exercise) that |z]? = 2Z.
It can also be checked (exercise) that when z, 2’ € C, then

2zl =7 2.

Functions f(z) of complex numbers z = a + ib are defined by extending
the Taylor expansion of f(z) to the complex numbers, when this Taylor
expansion exists. So if around a point xy we have

flz) =) eulx —wo)",

n>0



8 CHAPTER 1. PRELIMINARIES

for x in some neighborhood of z(, then we simply write

f(z) = ealz — o),

n>0

and then start worrying about convergence. For instance, it can be checked
(exercise) that the exponential, sine and cosine functions are all well defined
on complex numbers with everywhere-convergent Taylor expansions, and for
z =10, satisfy

e = cosf + isiné.
A neat interpretation of this quantity is that e is identified as the vector
with components cosf and sin@ in the plane; it points in a direction that

makes an angle 6 with the positive real axis, and has length one since
le®| = V/cos2b 4 sin?b = 1.

So we see that a complex number z is linked to its polar decomposition (p, )
through

z = pe'.

This characterization also leads to the curious result that ™ = —1.

1.2 Linear combinations, linear maps

Let us return to the interpretation of the matrix-vector product Ax. As
explained on page 4 of the textbook, we can view b = Ax as a linear com-
bination of columns of A. If the columns of A are denoted a;, then a linear
combination of ay, ..., a, with coefficients z; is simply

n
b = E xjaj.
=1

This is saying exactly the same thing as b = Az. We say that z; are the
components of b in the collection of vectors a;. (I'm holding off from talking
about a basis of vectors instead of a collection, but that will come later.) For
reference, adding vectors means adding the components of the first vector to
the corresponding ones of the second vector. Multiplying a vector by a scalar
means multiplying each of its components by that scalar.

The space generated by all possible linear combinations of some vectors
a; has a special name.
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Definition 1.1. We call linear span of the vectors a;, or space generated by
the vectors aj, the space of all linear combinations Zj cja; of these vectors,
where the coefficients c; are scalars. It is denoted span{a;}.

Linear spans can be visualized graphically in the case when the scalars
appearing in the linear combination are real:

e The linear span of a vector a; consists of all the multiples aa; for a € R,
hence if a; is not the zero vector, the linear span is a line through the
origin and the point a;.

e The linear span of two (nonzero) vectors aj, as consists of all the com-
binations aa; + (as, hence it is a plane through the origin and the
points aq, as.

e Etc. in higher dimensions, we may talk about hyperplanes.

Example 1.1. In R® (n = 3), the vectors a; = (1,0,0) and ay = (0,1,0)
span the xy-plane, i.e., the plane perpendicular to the z-axis and passing
through the origin. If, to this collection, we add another vector whose third
component is nonzero, then it will not lie in the xy-plane, and the linear span
of (1,0,0), (0,1,0) and this new vector will be the whole space.

The zy-plane is equivalently generated by by = (1,1,0) and by = (1, —1,0),
among other choices. In order to (rigorously) prove this fact, consider any
linear combination of by and by:

1 1
all]l+81 -1
0 0

By the usual rule of addition it can be rewritten as

1 0
(@+B) |0 +(@=F) | 1],
0 0

hence it 1s also a linear combination of a; and as. Conversely, we also have
to show that any linear combination of a1 and as is also a combination of by
and by, which we leave as an exercise to the reader.

In view of the interpretation of b = Az as a linear combination of columns
of A, a particularly important example of linear span is the span of all the
columns of a matrix.
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Definition 1.2. The span of all the columns of a matrix is called the range
space of the matriz, or simply range, or column space, and denoted range(A).
In other words, it is the set of all b that can be expressed as Ax for some x.

The word “linear” has a deep significance in all these concepts, and in
this course in general. A wvector space is by definition a set of vectors that
have the linearity property, i.e., when we take two vectors inside the set, then
any linear combination of these vectors will also belong to the set. In other
words, F is a vector space when, for any scalars o and (3,

r,yeklk = oar+pyeeE.

For instance, any linear span is manifestly a vector space (why?).

The other important instance of the word linear in this course is in the
notion of linear map. A map is synonym to function from one set to another:
a map M from a vector space E to another vector space F' acts on x € F to
output M(x) € F. This map is linear when, for all z,y € E, for all scalars

a, 3,
M(ax + By) = aM(z) + M (y).

For instance, any m-by-n matrix A defines a linear map from R" to R™
through matrix-vector multiplication. Indeed, it is easy to check from the
definition that

A(ax + By) = aAx + [Ay.

This example is generic; matrices are the most general way of writing linear
maps from one linear space to another. This fact is why matrix multiplication
is defined the way it is!

1.3 Linear independence, dimension, rank

The number of vectors that generate a linear span is sometimes representative
of the actual dimensionality of that linear space, but not always. For instance,
we can continue the discussion of example 1.1 by considering not two, but
three vectors

1 0 ~1/2
0], L, V2
0 0 0

These three vectors are coplanar, i.e., they lie in the same plane z = 0,
because their third component is zero. As a result the linear span of these
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three vectors is still the zy-plane, which is two-dimensional. The discrepancy
between the number of vectors and the dimensionality of their span lies in
the fact that either vector among the three above is a linear combination of
the other two, for instance

~1/2 L (1 0
V2 | = AL +v2 (1
0 0 0

We could therefore eliminate either one of the three vectors from the collec-
tion without changing the linear span a bit.

The right notion of dimensionality stems when one considers vectors that
are linearly independent, i.e., when no vector in the collection can be ex-
pressed as a linear combination of the others. The proper way to formalize
this idea (without favoring any particular vector in the process) is the fol-
lowing definition.

Definition 1.3. The vectors aq,...,a, are said to be linearly independent
if, in case scalars ¢y, ..., c, can be found such that

c1a1 + ...+ cpa, =0,
then necessarily ¢, = ... = ¢, = 0.

Let us check that if vectors are not linearly independent in the sense of
this definition, then they are linearly dependent. Indeed if there exists a
nonzero solution to cya; + ... + ¢ya, = 0, say with ¢; # 0 (without loss of
generality), then we can isolate a; and write

a; = ——(coas + ... + cpay),
1
which would mean that a; is a linear combination of the other vectors.
When considering the space spanned by a collection of linearly indepen-
dent vectors, and only then, the number of vectors is a correct indicator of
the “type” of space generated (line, plane, hyperplane): we simply refer to
this number as the dimension of the space.

Definition 1.4. Consider a vector space E spanned by n linearly independent
vectors. Then n is called the dimension of that space. It is denoted dim(E).
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For example, a line has dimension 1, a plane has dimension 2, the whole
space has dimension 3, and the concept extends to arbitrary linear subspaces
of R™ now that we are armed with the notion of linear independence.

When a collection of vectors is linearly independent, then we say it is a
basis for its linear span. More generally, we talk of a basis for a vector space
when the following to conditions are met.

Definition 1.5. A collection of vectors {a;} is called a basis for a vector
space E when

e they are linearly independent; and

e they generate E (i.e., E is their linear span).

For instance
{(1,0,0),(0,1,0)}
is a basis for the zy-plane;

{(1,0,0),(0,1,0),(0,0,1)}
is a basis for the whole space R3, but
{(1,0,0),(0,1,0),(3,4,0)}

is not a basis of any space since the vectors are linearly dependent. The
concept of basis is important and will come back later.

It is important to point out that, given a vector space, there may be
different bases for that space, but the number of such basis vectors does not
change. In other words the dimension is an intrinsic number, and does not
depend on the choice of basis. We prove this result in Section 1.5. (And,
strictly speaking we have been cavalier in writing the above definition of
dimension without having previously established that it is independent of
choice of basis.)

If we are in presence of some vectors that depend linearly on the others,
then we may remove those vectors from the collection and still the linear
span would remain the same. I prove this fact in footnote!. The proof is
quite simple and may seem verbose to some, but I hope that it will also serve
as one of many examples of proof writing for those of you unfamiliar with
proofs.

We can apply these notions to the columns of a matrix. They need not
always be linearly independent as the following example shows.

!By assumption, one vector depends linearly on the others. Without loss of generality,
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Example 1.2. Consider the matriz

1
A= |4
7

co Ot N
O O W

Its columns are linearly dependent, because
2 1 3
2151 —14]1—-16]=0.
8 7 9

We may therefore remove (2,5,8) from the set of columns without changing
the linear span. The remaining two columns are obviously not collinear, so
we conclude that the dimension of the range space of A is two.

Definition 1.6. The dimension of the range space of a matriz is called the
rank of the matrix. It is also the number of linearly independent columns.

If a matrix of size m-by-n has rank n, then we say it has full rank. If on
the other hand the rank is < n then we say the matrix is rank-deficient.

We will see in details in the following chapters at least two different ways
of obtaining the rank of a matrix, and a basis for the range space, without

call this vector a; (otherwise relabel the vectors). For some scalars co, ..., ¢, we have
a1 = CoQ2 + ...+ Chly.

We have to show that span {ai,...,a,} is the same as span {as,...,a,}. Two sets are
equal when they are included in each other, so let us show the double inclusion.

e If a vector v belongs to span {as,...,a,} then it is written as a linear combination
of as,...,an, which is a fortiori also a linear combination of ai,...,a, (with the
coefficient of a; equal to zero). Hence the vector also belongs to span {a1,...,an}.

e If a vector v belongs to span {ai,...,ay}, then
v=aoa1a1 + ...+ aa,

=ay(caan + ...+ Ccran) + asas + ... + anan

= (a1ca + ag)as + ...+ (a1, + ap)ay.

So v is a linear combination of as, . . ., a, and therefore belongs to span {as, ..., a,}.
We are done.
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having to play the game of trying to identify columns that depend linearly
on each other. It becomes quickly impractical for large matrices. Algorithms
are needed instead (and they are quite elegant algorithms.)

Anytime we can find a linear combination of the columns of a matrix
that vanishes (equals zero), then we are in presence of linearly dependent
columns, and this is the signature that the rank is smaller than the actual
number of columns. Call z; the nonzero coefficients of the linear combination
of columns that vanishes: in matrix notation this means

Az =0, (here 0 means the zero vector in R™ or C™)

There is a special name for the linear space of such x.

Definition 1.7. The set of all x such that Ax = 0 is called the nullspace of
the matriz A, or kernel of the matriz, and is denoted null(A).

The dimension of the nullspace is the number of linearly independent x
such that Az = 0; it shows the number of “essentially different” ways of
forming linear combinations of the columns of A that vanish. For example,
if x = 0 is the only way that Az = 0, then the nullspace consists of {z = 0}
(is zero-dimensional) and all the columns of A are linearly independent (the
matrix is full-rank).

More generally, the dimension of null(A) is exactly the discrepancy be-
tween the rank of a matrix and the number of columns. We formulate this
observation as a theorem.

Theorem 1.1. Let A by m-by-n. Then dim(range(A)) + dim(null(A)) = n.

We postpone the justification of this result until Chapter 3.

Another property of ranks is the following: the rank of an m-by-n matrix
is at most equal to min(m, n), the minimum of m and n. If for instance n is
greater than m and the matrix is horizontal-looking (or, wide,) then there is
no way one can find more than m linearly independent columns among the n
columns, because it is impossible to find more than m linearly independent
vectors in R™. (If you are not convinced of this fact, see Section 1.5, Lemma
1.2 below for a discussion and a pointer to the proof.)

1.4 Invertibility of a matrix

Let us return to the basic question of solving a system of linear equations
written in matrix form as Ax = b. The problem is to find z; whether that is
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possible or not will depend on the properties of A and b. Let us first consider
a case in which things go wrong.

Example 1.3. Again, consider

whose nullspace is

null(A) ={a | 2 | :a€C}.
~1

Try to solve Ax =b. Here are two choices for b:

o [f
then one solution is

but so is the sum of this x1 with any element of the nullspace:

1 —1
zo=10)4+a| 2
0 —1

So we have non-uniqueness of the solution, an undesirable situation.

e [f on the other hand b ¢ range(A), then by definition one cannot express
b as a linear combination of columns of A, i.e., we cannot express b
as Ax. In that case there does not exist a solution; this is another
undesirable situation.

As we’ll make precise below, the problem has to do with the monzero
nullspace, i.e, rank-deficiency of the matriz A.
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We say that the matrix A is invertible, or nonsingular, when for each b
the equation Ax = b has one and only one solution z. In other words, to
each b corresponds a single x and vice-versa. There is a precise concept for
this in math: we say that the matrix A defines via matrix-vector product a
linear map, and that this map is a bijection, or bijective map, from R" to
R™.

Definition 1.8. A linear map M between two vector spaces E and F is called
bijective if it is

e injective, or one-to-one: this means that if M(zx) = M(y), then x = y.
Or equivalently, if x # vy, then M(x) # M(y). Said yet another way:
M maps no two distinct vectors to the same vector.

e surjective, or onto: this means that for everyy € F, there exists x € E
such that M(zx) = y.

The following result makes precise the intuition we developed earlier that
invertibility is linked to the rank of a matrix.

Theorem 1.2. A square, full-rank matriz A is invertible.
Proof. As a linear map,

e is A surjective? Or, for every b, does there exist a solution z to Az = b?
Yes, because the columns of A generate C", hence each b has a linear
expansion in the columns of A, and the coefficients of this expansion
are precisely the components of x.

e is A injective? Or, does Ax = b have a unique solution? Assume that
there exist x1, 9 such that

Axry =0, and Axy = 0.

Then we can subtract the two equations and obtain Ax; — Azy = 0,
or by linearity. A(z; — z9) = 0. Because the columns of A are linearly
independent, this implies 1 — 29 = 0 = 1 = 5. So the two solutions
must be the same, which establishes uniqueness.

]

Theorem 1.3. A square invertible matriz A is full-rank.
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Proof. Assume by contradiction that the matrix isn’t full-rank. Then the
columns of A cannot be linearly independent. (Strictly speaking, this is the
contraposition of Lemma 1.3.) So there exists ¢ # 0 such that Ac = 0. Fix
any b € C" and consider the system Az = b. Since A is invertible, there exists
a solution x* to this system. (Here the star notation has nothing to do with
adjoints.) But 2*+c is also a solution, since A(z*+4c) = Az*+Ac = b+0 = b.
This contradicts uniqueness and therefore the assumption of invertibility.
Thus the matrix must be full-rank. ]

The proof of Theorem 1.2 points to an interesting interpretation of the so-
lution x to Ax = b: the components of x are the coefficients of the expansion
of b in the basis of the columns of A.

So we may in fact view solving a linear system as a change of basis for b.
To explain this concept, introduce the canonical basis {e;} of R" (or C") as
the columns of the identity matrix. In other words,

0

0
where the 1 is in j-th position. Then the components of b can be seen, quite
tautologically, as the components of its own expansion in the canonical basis.
On the other hand z, again, contains the coefficients of the expansion of b in
the columns of A.

This observation is well-explained in the textbook. It is also argued that,
in order to form the coefficients in the system {e;} (that is, b), it suffices
to multiply the coefficients in the system {a;} by the matrix A (that is, it
suffices to form Azx). The reverse operation, going from b to x, is done by
multiplying by the inverse of A:

b= A"z,

This is also an explicit form of the solution of the system Az = b. The
following result establishes the existence of the inverse matrix A~!. So, in
particular, it establishes that the map from b to z is linear.
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Theorem 1.4. Assume A € C™™ (or R™*™) is square and invertible. Then
there exists a unique B € C™*™ (or R™*™, respectively), such that

AB=BA=1,

where I is the n-by-n identity matriz. [B is called the inverse matriz of A,

and denoted B = A~1.]

Proof. In three steps, let us show 1) the existence of B such that AB = I,
2) the existence of C' such that CA = I, and 3) that B = C.

1. Consider {e;} the canonical basis of C" as we did earlier. Since the
columns of A form a basis by assumption (the matrix is invertible), we

can expand
n
€; = E bkjak,
k=1

where ay, is the k-th column of A. In matrix notation, let b;; be the
(1,7) element of a matrix B. Then we have I = AB, as desired.

2. In order to show the existence of C' such that CA = I, one would need
to know that the rows of A are linearly independent, and proceed in a
very similar manner. We postpone this question to Chapter 3.

3. Form CAB. On the one hand C(AB) = CI = C. On the other hand
(CA)B=IB=DB. SoB=C.

]

There are many ways to check that a matrix is invertible, as in Theorem
1.3 on p.8 of the textbook. We need a few definitions before proceeding with
it.

Definition 1.9. (Figenvalue, eigenvector) Let A € C"*". The scalar A € C
is called an eigenvalue of A, with eigenvector v € C", when

Av = .

There are a few different ways to introduce the determinant of a matrix,
but the following definition is relatively simple in contrast to some others.
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Definition 1.10. (Determinant) This in an inductive definition on the size
of the matrixz: we’ll assume we know the determinant for matrices of size
n-by-n, and we’ll prescribe what it is for matrices of size n + 1-by-n + 1.
We need a base for this induction: if a € C, then det(a) = a. Now let
Ac C(n+1)><(n+1)'

Consider B;; the submatriz of A where the i-th row and the j-th column
have been removed. Let A;; be the (i, ) element of A. Then, regardless of i,
the following expression gives the determinant of A:

n

det(A) = (—1)"" Ay det(By;).

j=1

(Strictly speaking, we’d have to show that indeed, the definition does
not depend on the choice of row for calculating the determinant expansion,
before stating this definition.)

a b
det(c d>—ad—bc.

Here is now a summary of what we know about invertibility of a matrix.
Only the link to determinants has not been covered so far.

Example 1.4.

Theorem 1.5. Let A € C™" (or R™*™). The following are equivalent:
o A is invertible.

e A has an inverse A7t such that AA™' = A~1A=1.

rank(A) = n.

range(A) = C.

null(A) = {0}.

0 is not an eigenvalue of A.
e det(A) # 0.

We may also add “0 is not a singular value” to this list — we’ll see later
what singular values are.
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1.5 Proofs: worked examples

You may find useful to get acquainted with the material in this section, in
anticipation of the homework exercises that consist in doing math proofs.

First, a very general remark concerning the structure of a proof. It is
never okay to write an argument by assuming that the result is true and
deriving consequences from it. For instance, it would be like being asked to
prove A = B but you would instead show B = A. It could be occasionally
okay to work your way backwards (and for instance find C' such that C' = B
and then A = ('), but it is very important to keep track of the proper logic
of the argument (direction of the implication.)

Now for some notations. “An element x belongs to a set E” is denoted
x € F. “A set F is included in a set F” is denoted ¥ C F'. Writing £ C F
is equivalent to the statement “for all x € F, then x € F”. The equality
E = F for sets means F C F and F C E. An assertion A holds “if and only
if” assertion B holds, means: A < B (they are equivalent).

Some of the following results are very obvious, but being confident that
they are obvious is rewarding. You may find it useful to call upon them when
you solve an exercise. Their justifications contain common proof techniques,
such as induction, and contradiction.

Lemma 1.1. Fvery vector space has a basis.

The above result is so foundational that it is in fact hard to prove! You
need the “axiom of choice” for it. This is way out of scope for this course.

Lemma 1.2. Let A € C™" with m < n (the matriz is short and wide).
Then there necessarily exists a nonzero solution to Ax = 0.

Intuitively, if a matrix is short and wide, the corresponding system has
more unknowns than equations, and it is natural to expect that there may
be different ways of explaining the right-hand side identically equal to zero
by means of different x’s — or any right-hand side for that matter. A proof
of this result involves reduction to a row echelon form and is not too difficult,
but I won’t reproduce it here. For reference, see the book “Introduction to
linear algebra” by Gilbert Strang where row echelon forms are covered in
great detail. (We may come back to this topic when we discuss solutions of
linear systems.)

Lemma 1.3. Let E be a vector space with dim(E) = n. If we can find n
linearly independent vectors a; in E, then they form a basis of E.
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Proof. We have to show that any element of £ can be written as a linear
combination of the a;. Suppose instead that we cannot, i.e., that there exists
a vector v € F that would be outside the span of the others, and let us
show that this will lead to an absurdity. That’s the principle of a proof by
contradiction.

Let n = dim (F). If v is outside span {ai,...,a,}, then it is linearly
independent from the a;, because if

ciar + ...cpa, +dv =0,

then d = 0 (v cannot be a linear combination of the others) and ¢; = ... =
¢, = 0 (by linear independence of the a;.) Then we are in presence of a
collection {ay,...,a,,v} of n 4+ 1 linearly independent vectors in E. Cre-
ate a n-by-(n + 1) matrix A with this collection of vectors as columns; the
linear independence property is expressed as Axr = 0 = x = 0. This is in
contradiction with Lemma 1.2, hence the desired contradiction. O

It is now a good point to prove a result mentioned earlier.

Lemma 1.4. Any two bases of a vector space have the same number of
elements.

Proof. Let E be this vector space, and let {v;|j = 1,...,m} and {w;|j =
1,...,n} be two bases. By contradiction assume that m < n (if n < m, swap
v and w). Since {v,} is a basis, each wy, must be a combination of the v;:

m
Wy = E CjkVj,
J=1

for some scalars c;;. In matrix notations where vectors are placed in columns
of matrices, we have

W =VvcC

Now C'is a m-by-n matrix with m < n (it is short and wide), with entries
¢jr. By Lemma 1.2, there exists a nonzero solution x of C'z = 0. It is also a
solution of VCz = 0, hence Wx = 0. This is to say that the wy are linearly
dependent, which contradicts our assumption that {wy} is a basis. This is
the desired contradiction. O

A careful inspection of the proof of the previous result reveals that, if we
are solely interested in the claim m > n, then the assumptions on v; and wy,
can be relaxed.



22 CHAPTER 1. PRELIMINARIES

Corollary 1.1. Let E be a vector space. Assume {vj|]1 < j < m} C E is
generating E, and assume {wg|l < k < n} C E are linearly independent.
Then m > n

The proof of the following result is slightly more involved.

Lemma 1.5. (The basis extension lemma) Let E be a vector space. If we
can find n <dim(E) linearly independent vectors a; in E, then there exists a
basis of E/, which they are a part of. In other words, one can extend the a;
into a basis.

Proof. Let m = dim(E). Consider {b;|1 < j < m} a basis of E; it exists by
Lemma 1.1. Then the collection

C’m:{al,...,an,bl,...bm}

is clearly generating E, but there may be too many vectors. It suffices to
show that, possibly after removing some vectors among the b’s, we can obtain
a basis. The proper way to proceed is to do a proof by induction.

Fix k& > 0. Suppose that for this particular k, anytime we have a set

Cr ={a1,...,an,v1,...0;}

of the vector space F, assumed to be a generating set, then it is possible
to extend aq,...,a, into a basis by adjoining some v’s among vy, ..., v, to
them. (I use the letter ¢ instead of b because they may be different; it is a
generic argument.) Then the proof by induction consists in showing that the
same assertion is true if we replace k by k£ + 1. Of course we have to check
first that the assertion is true for £ = 0: that’s the basis of the induction.
When this is done, we will have a guarantee by “bootstrapping” that the
assertion is true for any k, in particular £ = m, which is what we want. We
say that the induction is over the parameter k.

(Notice in passing that the induction assumption that “the assertion is
valid for k7 looks a bit like assuming that the result itself is true — something
highly forbidden — but of course it is not the same thing at all.)

We start with the start of the induction: £ = 0. In this case we are in
presence of the set {ay, ..., a,}, which is linearly independent by assumption,
and generating by the induction assumption. Hence it is a basis, trivially.
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Let us now make the induction assumption that if we are in presence of
a generating set with k extra vectors, a basis can be constructed by taking
the a’s and some well-chosen ¢’s. Consider then the set

Ck+1 == {CLl, vy Qp, U, .. .Uk+1}.

In case aq,...,a, would already generate F on their own, hence would be
a basis, there would be nothing more to prove. So let us consider the case
when aq,...,a, are not generating. Then at least one of the v; does not
belong to span {ai,...,a,}, because otherwise span {ai,...,a,} = span
{ai,...,an,v1,..., 0p41} = E.

Let us call this vector v; without loss of generality — otherwise simply
relabel the collection v;. We claim that v; is linearly independent from the
other vectors ay, ..., a,. Indeed, if

ciay + ...+ cpa, + dvy =0,

then d = 0 (because v; cannot be a linear combination of the others) and
c1 =...= ¢, =0 (because the a; are linearly independent.) Append v; to
the collection of a; to form the set

{ai, ..., an,v1}.

It is a set of linearly independent vectors, as we have seen. There are precisely
k remaining vectors ca, . . ., k11, and together with the set {aq, ..., a,, c1}, we
are still in presence of Cj 1, a generating set. So we can apply the induction
assumption and conclude that a basis can be extracted from this sequence
Cr11. This finishes the proof. O

Lemma 1.6. Let E' and F' be two vector spaces. If E C F, then dim E <
dim F.

Proof. Let {a;} be a basis for E. Then they are also linearly independent as
elements of F'. By the basis extension lemma, there exists a basis of F' that
contains the {a;}. Hence dim (F) is at least greater than the cardinality of
{a;}. (The cardinality of a set is the number of elements in that set.) O

Lemma 1.7. Let E and F' be two vector spaces. If E C F and dim (E) =
dim (F), then E = F.
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Proof. Let {a;} be a basis for £, with j = 1,...,dim(E). They are also
linearly independent as elements of F. Since dim(F') = dim(E), we can
invoke Lemma 1.3 and conclude that the a; are generating F. Thus a; is
also a basis of F.. A vector space is entirely specified by a basis that generates
it, so E and F' are equal. O

Here is a result complementary to Lemma 1.3.

Lemma 1.8. Let E be a vector space with dim(E) = n. If we can find n
generating vectors a; in E, then they form a basis of E.

Proof. It suffices to show that the a; are linearly independent. By contra-
diction, assume they are not. Choose k such that

a € span{ay, ..., Qg_1, gt1, - - ., Gn}-

As we saw earlier, removing a; from E does not change the space spanned
by the remaining vectors, hence

span{ay, ..., Qk—1,ap11,- .-, 0n ) = E.

We are in presence of a sequence of m = n — 1 generating vectors in a vector
space E which also contains, by the dimension assumption, a collection of n
linearly independent vectors. This contradicts the result that m > n from
Corollary 1.1. The proof is complete. O]

Lemma 1.9. A matriz A € C"*" is full-rank if and only if its columns form
a basis of C™.

Proof. Let us examine the claim full rank = basis.

e Are the columns generating? The range space is a subset of C", and its
dimension is n, so we can apply Lemma 1.7 to conclude that range(A) =
C.

e Are the columns linearly indepedent? There are n of them and they are
generating, hence they are necessarily linearly independent by Lemma
1.8.

Now let us examine basis = full rank. Since we have a basis of the range
space with n elements, it follows by the definition of dimension that the
dimension of the range space is m, which means the matrix is full-rank. [J



Chapter 2

Dot product, orthogonality

The material in this Chapter is partly covered in Lecture 2 of the textbook,
so I will not repeat that part here. I will only give miscellaneous remarks
and additions.

Here is a useful definition.

Definition 2.1. The Kronecker delta, or Kronecker symbol, is defined as

s _ [ 1=
TN 0 ifi 4.

In other words, 0;; is the (i,7) element of the identity matriz.

With the intent of introducing the concept of proof by induction, let us
solve exercise 2.2.

Example 2.1. . Let {z; : 1 < j < m} be a set of m orthogonal vectors in
some vector space. Let us show the Pythagorean law

m m
1>l = Nyl
j=1 j=1
First, we can show the case m = 2 by hand:

|lz1422||? = (z1422)* (21+22) = 252 +ai Tt aim +abay = wio+abey = |2y [P 4|22,

where we have used orthogonality of x1 and xo. The principle of a proof
by induction is to assume that the result has already been established for

25



26 CHAPTER 2. DOT PRODUCT, ORTHOGONALITY

m = n—that’s called the induction assumption—and then establish the result
for m = n+ 1. This works if we manage to also prove it for the lowest
interesting value of m, here m = 2—that’s the base of the induction. Then,
when that is done, the result will be true for m = 3,4, 5, etc.

So consider m =n + 1. We decompose

n+1

||Z$z||2 = (sz + $n+1> (sz + $n+1>
i—1 i—1 i—1
= ((Z )"+ 332+1) (Z T + an)
i—1 i=1

= (3w (O )+ (O w) e + (30 #0) + 2
=1 =1

=1 i=1
n n

= (Z xz)*(z T;) + Ty Tng1 by orthogonality

=1 =1

n
= Z l2il|* + |l znga || by the induction assumption.
i=1

This proves the result for m =n + 1, and hence for all m > 2.

2.1 Orthogonal projections

Here is the definition of orthogonal projection.

Definition 2.2. Let {uy,...,uy,} C C" be an orthonormal set, with m < n.
Then the orthogonal projection of v € C™ onto {uy,...,uy} is defined as
w = Z(uf V).
i=1
This definition only works if the u; are orthonormal!

Proposition 2.1. If m = n, then an orthonormal set {us,...,u,} C C"
i an orthonormal basis, and the orthogonal projection recovers the original

vector v:
n

V= Z:(ufv)uZ

i=1
We say that this formula is the orthogonal expansion of v in the basis uq, . .., Up,.
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Proof. Since {uy,...,u,} is orthonormal, Theorem 2.1 in the book asserts
that the vectors are linearly independent. A collection of n linearly indepen-
dent vectors in C™ is a basis, as we saw in Chapter 1. So for any v € C, there
exists coefficients ¢; such that

n
v = E CiU;.
=1

Dot this equality with u;:
n
uiv = Z Cill;U;.
i=1
This is where the Kronecker symbol is useful; since {u;} is an orthobasis, we
have u; * u; = d;;, so the above relation simplifies to

n

uiv = g cidij = ¢j.

i=1
This is an explicit formula for the coefficients ¢; that we can plug back in the
expansion of v:
v = Z(ui‘v)uZ
i=1

O

Here is probably the most useful characterization of orthogonal projec-
tions.

Proposition 2.2. Let {uy,...,u,} C C" be an orthonormal set, with m <
n. Then
ui(v—w) =0, Vi=1,...,m.
In other words, v — w is orthogonal to span {uy, ..., Up}.
Proof.
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Remark 2.1. Interestingly, the result above is also true if the u; are simply
a basis (not necessarily orthonormal). We’ll come back to this later.

We saw that a unitary matrix is defined as having the vectors of an
orthonormal basis as columns. We can then view the statement

* —
ui Uj = 51']'

In matrix notation as

UU =1,

or in other words U* = U~!. Since the inverse is unique and the same on the
left and on the right, we also necessarily have UU* = I.



Chapter 3

The four fundamental spaces of
a matrix

This Chapter is not covered in the textbook, for the most part.

Let us return to a question that was left unanswered in Chapter 1: do the
rank of a matrix and the dimension of its nullspace sum up to n, the total
number of columns? That was Theorem 1.1.

The answer to this question will naturally bring about the four funda-
mental subspaces of a matrix. The upgrade from Chapter 1 is that we will
now need to manipulate not just linearly independent columns, but linearly
independent rows as well. The first thing to notice about rows is that if we
pre-multiply a matrix A by a row vector 27, then 27 A has the interpretation
of being a linear combination of rows.

Secondly, the rows of a matrix A are the columns of the transpose AT (or
adjoint A*) of the matrix A. So our interpretation of mat-vec product as a
linear combinations of either rows and columns is consistent if we notice that

2TA = (ATz)T.
More generally, it is a good exercise involving manipulation of subscript
notations to show that BT AT = (AB)T, or B*A* = (AB)*.
3.1 Column rank and row rank

We need to be a little careful with the notion of rank. We've seen that it
is the number of linearly independent columns, but we haven’t justified yet

29
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that it’s also equal to the number of linearly independent rows (that’s true
— we'll come back to this later in this section.) So for the time being, let
us denote the rank of A by c-rank(A)—for column rank—and denote the
number of linearly independent rows by r-rank(A)—for row rank.

Using rows, we can also give another interpretation to elements in the
nullspace of A: Az = 0 means that z is orthogonal to all the rows of A.

Let us now move on to material that will be useful in the proof of Theorem
1.1. We will mostly manipulate real matrices in this chapter.

Lemma 3.1. Let A € R™" and B € RP*". If null(A) = null(B), then
c-rank(A) = c-rank(B).

(Notice that it would be false to claim that the two range spaces are the
same, since they are subsets of different vectors spaces: range(A) C R™,
while range(B) C RP. It is only the dimensions of these range spaces that
are the same.)

Proof. Denote a = c-rank(A) and b = c-rank(B). Assume by contradiction
that a > b. Let {iy,...,7,} be the indices (labels) of a subset of linearly
independent columns of A. So if a; denote the columns of A, the only way

that
a
Z CjCLi]. =0
j=1

is that all ¢; = 0. Now, since the rank of B is strictly smaller than A, there
must exist a linear combination of the columns b;,,...,0b;, that vanishes:

> djbi; =0,  not all d; =0.
j=1

Form the vector x € R™ in such a way that x;, = d;, for j = 1,...,a, and
the other components are zero. Then the relation above concerning linear
dependence of columns of B reads Bx = 0. Since by assumption the two
nullspaces are equal, then for that particular x we must also have Ax = 0.
Back in columns notations, this says

Z dja;; = 0, not all d; =0,
j=1
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which contradicts what we had said earlier concerning linear independence
of those columns of A. So we have proved that a < b. The proof that a > b
is the same after interchanging the roles of A and B. ]

Here is another preliminary result that we will need to invoke later.

Lemma 3.2. Permuting rows of A € R™*™ changes neither r-rank(A), nor
c-rank(A).

Proof. That the row rank does not change is trivial, since the span of a
collection of vectors does not depend on the order in which these vectors
appear in the collection.

After permutation of the rows, the matrix A becomes B. Consider the
nullspace of A; as we observed earlier, Az = 0 means that x is orthogonal to
all the rows of A. But the rows of B are also rows of Aj albeit in a different
order, so if Az = 0 then Bz = 0 and vice versa. Thus null(A) = null (B).
By the preceding lemma, this shows that c-rank(A) = c-rank(B) and we are
done. [

Let us now prove that r-ank and c-rank are equal.
Theorem 3.1. Let A € R™*". Then r-rank(A) = c-rank(A).

Proof. Call r = r-rank(A) and ¢ = c-rank(A). Permute rows of A such that
its first r rows are linearly independent, where r is the row rank. Since
permuting rows changes neither the row rank nor the column rank, we might
as well (without loss of generality) assume that the matrix A comes in this
form in the first place, i.e., with its first r rows linearly independent. So let

us write 5
a=(c)

where B € R™" and C € R™"*" and the rows of B are linearly
independent. Since the rows of C' must depend linearly on the rows of B,
there exists a matrix 7' such that

C=TB

(To see why that’s the case, consider the interpretation of 7B as a linear
combination of rows of B and generalize this to a matrix product T'B where
each row of T generates a linear combination of rows of B.)
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()

From this formula, we readily see that Az = 0 < Bz = 0. Hence null(A) =
null(B). By Lemma 3.1, this implies

Then

¢ = c-rank(A) = c-rank(B).

Now B is a r-by-n matrix, so the number of linearly independent columns
cannot exceed the length (number of components) of each column, so c-
rank(B) < r. This proves that ¢ < r. The proof of r < ¢ is very analogous
and involves repeating the same argument on A” in place of A. m

With this result in the bank, we can now revisit two of the proofs that
we had “left for Chapter 3”.

e One theorem said that if a matrix is invertible then there exists a unique
inverse matrix, and it is the same on the left and on the right. With
the equivalence of a matrix being full-column-rank and full-row-rank,
we can now fully justify the theorem. (Exercise)

e The other theorem is what we set out to justify in the beginning of this
Chapter, namely

rank(A) + dim(null(A)) = n.

3.2 The sum of two vector spaces
But we still need a few more notions before we can address the latter point.

Definition 3.1. The sum of two vector spaces is defined as
V4+W={v+w:veVweW}.

Example 3.1. Consider



3.2. THE SUM OF TWO VECTOR SPACES 33

and
0
W = span{| —1 | }.
1
Then
—1 0
V4+W=span{| O |,|—-1]}
1 1
-1 0
={a| 0 | +8|-1]|;a,06€R}
1 1
-
={| -0 | :«a,0€R}
a+ 3
It is the subset of vectors in R® for which the third component is minus the
first, minus the second one, or in other words z = —x — y, i.e., the plane
r+y+z=0.

Definition 3.2. Let V,W be two vector spaces. W is said to be orthogonal
to V' (or vice-versa) if

YoeV, YwelWl, v-w = 0.

Lemma 3.3. Let V and W be two orthogonal vector spaces. Then their
intersection is V. N W = {0}.

Proof. Let x € V. NW. Since on the one hand z € V', and on the other hand
x € W, we can take the dot product of x with itself and obtain

x-x=0.
This means ||z|| = 0, which implies x = 0. O
Lemma 3.4. Let V,W be two orthogonal vector spaces. Then

dim(V + W) = dim(V') + dim(W).
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Proof. Let {v;} be a basis for V, and {w;} be a basis for W. It suffices to

check that
{v;} U {wy }

is a basis for V+W, because then the dimension of V' +W will be the number
of elements in that compound basis, which is the sum of the elements in each
basis taken separately.

Hence we need to check two things:

o Together, are the vectors in {v;} U {wy} generating V + W7 Let x €
V 4+ W. By definition of V + W, there exist v € V, w € W such that
r = v+ w. Since {v;} is a basis for V, we can find some coefficients

such that
v = Z CjUj,

and similarly since {wy} is a basis for W,

Hence = = ) ¢ju; + > dywy, which means {v;} U {wy} is generating.

e Are the vectors in {v;} U {w;} linearly independent? Assume that for

some c;, dy,
ZCjUj + dewk = 0.

Then we write

Z CjV; = — Z dkwk = Z(—dk)wk

So we are in presence of an element x = ) ¢;v; of the space V, which
is also an element of W since z = > (—dg)wy. So x € VUW. We saw
in the previous lemma that the only possible way of having an element
in the intersection of two orthogonal spaces is that it be equal to zero:

x=0 = chvj = Z(—dk)wk =0.

We can now consider each relation ) cju; = 0 and Y (—dj)wy, = 0 in
isolation and use linear independence of {v;} and {wy} to obtain that

all ¢; = all d, = 0.
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This concludes the proof. O

Remark 3.1. In the more general case when the two spaces need not be
orthogonal, their intersection may be non-empty and we have

dim(V + W) = dim(V') + dim(W) — dim(V NW).

(Ezercise)

3.3 The orthogonal complement of a vector
subspace

The largest orthogonal space to a given vector space is called its orthogonal
complement.

Definition 3.3. Let V C R" be a vector space. Its orthogonal complement
s defined as
Vi={zeR":z-v=0 YveV}

The two typical examples of orthogonal complements that one can easily
visualize in R? are

e Given a plane passing through the origin, its orthogonal complement
is the line going through the origin and perpendicular to the plane;

e Given a line passing through the origin, its orthogonal complement is
the plane going through the origin and perpendicular to the line.

Here is a obvious lemma, but its constructive proof is interesting. We will
address that proof later in the course, but we need the lemma now.

Lemma 3.5. Any vector space contains an orthonormal basis.
Here is a useful fact about orthogonal complements.
Lemma 3.6. Let V € R". then
V+VE=R"

In other words, any element of R" decomposes as the sum of an element
of V, and an element of V+. That’s because V* is the largest vector space
that is orthogonal to V.
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Proof. The inclusion V 4 V+ C R" is obvious, since vectors in V and in V+
are all vectors of R™. For the reverse inclusion, let us proceed by contradic-
tion. Assume that there is an element x € R" such that

g V4+VEh

Consider {v; : j =1,...,m} an orthonormal basis of V' with m < n; we can
do so by the preceding lemma. Consider the orthogonal projection x of x

onto V:
T = Z(v

i=1

STk

By Lemma 2.2, we have the orthogonality property

The first term is an element of V', whereas the second term is an element of
W. Sox € V+V+, acontradiction. This finishes the proof.
]

Remark 3.2. We didn’t really need orthogonality of the v; above, since the
formula & = ), (viz)v; was not used explicitly. But we havent seen or-
thogonal projections with general bases yet.

Corollary 3.1. If V C R" is a vector space, then
dim(V') + dim(V*) = n.

Proof. We only need to put together the result that V + V+ = R" with the
result that

dim(V) + dim(W) = dim(V + W).
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3.4 The four fundamental subspaces

We now come to the bottom line. The point of introducing orthogonal com-
plements, for us, is that by construction, the nullspace of a matrix is orthogo-
nal to the rows of that matrix A, and therefore is the orthogonal complement
of the space spanned by the rows.
We call the space spanned by the rows the row space of a matrix. It is
denoted
row(A),

and if we interchangeably view vectors as either row vectors or column vec-
tors, we have the characterization that

row(A) = col(A") = range(A”).

I will use col instead of range for the range space, in this discussion. Let us
now consider what happens in R™ (target space of A as a linear map), and
in R™ respectively (domain space of the linear map).

e As a subspace of R", the nullspace of A is
null(A) = {z € R" : Az =0},
and manifestly, we have
null(A) = (row(A))*.

Notice that if A € R™*" row(A) and null(A) are both subspaces of
R™. It follows from the theory we have developed so far that

row(A) +null(4) = R",
and in terms of dimensions, that
dim(row(A)) 4+ dim(null(A)) = n.
e Another useful space is the left-nullspace, defined as
lnull(A) = {z € R™ : 27 A = 0},
which is the same thing as saying that l-null(A) = null(AT). Manifestly,
l-null(A) = (col(A))*.
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Notice that if A € R™*™, col(A) and l-null(A) are both subspaces of
R™. Tt follows from the theory we have developed so far that

col(A) + l-null(4) = R™,

and that
dim(col(A)) + dim(l-null(A)) = m.

The assertions in the two bullets above are sometimes called the Funda-
mental Theorem of Linear Algebra, and we have already provided its proof
since every statement follows from some other lemma seen earlier in the
Chapter.

The four fundamental subspaces of a matrix are precisely those that we
have introduced:

row(A), col(A), null(A), and l-null(A).

We can now go back to the claim concerning dimensions of range and
nullspace:
dim(col(A)) + dim(null(A)) = n.

As such, it does not immediately follow from the theory of orthogonal sub-
spaces since col(A) and null(A) are not orthogonal. If the matrix is rectan-
gular m # n, these subspaces are not even included in the same R”. But we
have seen that

dim(row(A)) + dim(null(A)) = n.
On the other hand, we know from Lemma 3.1 that
(r-rank(A) =) dim(row(A)) = dim(col(A)) (= c-rank(A)),

so we can substitute column rank for row rank and conclude that, indeed,
dim(col(A)) + dim(null(A)) = n.

Let us finish this chapter with one last important result concerning or-
thogonal subspaces.

Proposition 3.1. Let V C R" be a vector space. Then

(%
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Proof. The inclusion V' C (V+)* is obvious: any vector in V is orthogonal
to any vector in V+, by definition of orthogonal complement. For the reverse
inclusion, denote m = dim(V). Since

V+VEt=R",
we have
dim(V) + dim(V+) = n,
so dim(V1) = n —m. Now, we also have
VL + (VL)L — Rn’
SO
dim(V*) + dim((V*4)*) = n,

and dim(V+) = n — (n—m) = m. Hence we are in presence of V', a subset of
(V1)L yet both spaces have the same dimension, m. By Lemma 1.7, these

spaces must be the same.
O]
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Chapter 4

Change of basis and change of
coordinates

We saw earlier that solving Ax = b for x has an interpretation in terms
of “change of basis”. Namely if the vector b is seen as consisting of its
own components in the canonical basis e;, then x can be interpreted as the
components of b in the basis of the columns of A.

It can be surprising to read that the matrix for updating the components
of b is in fact the inverse of A, whereas the way of changing the basis vectors
e; into a; involves no inverse whatsoever. To understand this phenomenon
properly, we need to differentiate between change of basis and change of
coordinates. The following exposition is typically also presented in Physics
classes, and turns out to be the proper axiomatic approach to subjects such
as general relativity.

4.1 Change of basis and change of coordi-
nates for vectors

In this chapter, and only in this chapter, we will be very careful to discrimi-
nate between a vector x (we underlined those as x on the black board, instead
of using boldface), and its components x = (z1,...,2,) (ordered in a row or
column—that does not matter here.) The components of a vector depend on
a choice of basis, but a vector is an invariant object, like an arrow in R? or
R3, and does not depend on the choice of basis.

Let {ej,...,e,} be the canonical basis of R”. A change of basis means
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making a new choice {e],..., e} } of the basis vectors. The coordinates of
a vector x in the basis {ej,...,e,} are denoted z1,...,x,, while the coor-
dinates of the same vector in the basis {e],... e/} are denoted z},...z}.

That the same vector x has different components (coordinates) in different
bases means that

!/ 7/
XxX=x1€1+...+r,e, =216 +...+1,€,

This is called an invariance principle, and expresses the idea that the notion
of vector does not depend on any particular choice of basis, (and ultimately,
that the laws of Physics should be formulated in an invariant manner as
well).

A linear change of coordinates is the relationship

' = Prx & T = Z Pz,
J

between coordinates in two different bases. It is a matrix-vector product
involving a matrix P.

A linear change of basis is the expression
[ 9 /
e = Qe & e, = 5 Qije;.
J

We are in presence of a linear relationship between old basis vectors e; and
new basis vectors €} involving a matrix @), but it is not a matriz vector
product. Rather, the last expression involves vectors indexed by ¢ or j instead
of involving scalars as it did earlier for coordinates. Don’t let the simple form
of € = Qe fool you—this is why I wrote it in quotes.

We may now ask what is the relationship between P and (). Using the
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invariance principle,

x = Zme = ;réeé
=> Pijxj)(zk: Qixer)
- Z 2;(2 Py Qi) 5€y,
- z ;é(ﬂwmmek

%

= Z Z(PTQ)jk$jek-

But this quantity also equals > x;e;. Since x; cannot (generically) be the
component of any other basis vector than e, for £ = j, and the component
of e; is not just any multiple of z;, but z; itself, then necessarily

(P*Q)jk = dji.

In matrix notations,
PTQ =1,
or
Q= (P
It is a good, short exercise to prove that (PT)~! = (P17 so we simply
denote the inverse transpose by P~7.

Example 4.1. Let us see how these considerations relate to our discussion
of systems Ax = b of linear equations. In the notations used in this chapter,
b; are given the meaning of components of a vector b through b = Zj bje;.
The system Ax = b means that x; are the components of b in the basis a; of

the columns of A:
b = Za:jaj.
J

So we may write €; = a; for the new basis vectors, and b; = x; for the new
coordinates.

Let us check that the matrices P of change of coordinates, and () of change
of basis, are in fact inverse transpose of each other:
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e For the coordinate change, b; = x; = (A7'b);, so we have P = A~

o [or the change of basis, we seek a matriz ();; such that
a;, = Z Q,-jej.
J

In words, we are in presence of the decomposition of a; as a super-
spoition of the canonical basis vectors e; with coefficients Q5. So e; is
responsible for giving a; its j-th component, and setting it equal to Q;;.
The j-th component of a; is the element at row j and column i in the
original matriz A, which is Aj;. So Qij = Aj;, t.e., Q = AT.

We indeed have A= = P = Q1.

Example 4.2. Let us now consider the special case of rotations in the plane.
We can rotate {e1,es} by an angle 0 in the counter-clockwise direction. A
picture reveals that

e} = cosfe; +sinf ey,
e, = —sinfe; + cosf e,
from which the matriz Q) of change of basis is

O=R (cos@ siné’)
pr— 9: .

—sinf@ cosf

To which change of coordinates does this transformation correpsond? Since
Ry is unitary, we have

P=Q "=R_, =Ry,
so that the change of coordinates is written as
T} = cos Oy + sinf o,

Ty = —sinfx; + cos b zs.

This could also be obviously obtained form a picture, but our approach of
looking for matrices P and Q such that P~' = QT has the advantage of
working for arbitrary invertible matrices.
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A transformation according to a change of basis matrix () is called a “co-
variant” transformation by physicists, while a transformation according to
a change of coordinates matrix P = Q=71 is called “contravariant”. These
distinctions are the basis of tensor algebra, as well as analysis on manifolds,
and also form the notational foundations of general relativity. In other appli-
cation fields such as continuum mechanics, the decision is sometimes made
to consider only unitary change of basis, for which P = @), in which case the
distinction between covariant and contravariant objects is not present in the
notations.

Note that everything that we have explained above works for complex
matrices if we substitute adjoints A* for transposes A7

4.2 Change of coordinates for matrices

The notion of change of coordinates, or change of components, also makes
sense for a matrix. It follows from the notion that a matrix is a linear
transformation between vectors. People also speak of “change of basis” for
matrices, but it would take us too far into tensor calculus to try and make this
precise. So for matrices we’ll stick with change of components, or coordinates.

If under some linear invertible transformation P, vectors have components
that change according to

then any vector also has its components change according to the same matrix.
In particular, if we let y = Az, then under the same linear transformation
we necessarily have

y = Py = PAx.

Naturally, we let A’ denote the matrix that helps pass from 2z’ to y':
y = A7
Combining the above expressions, we have
y = PAv = A'Px
Since P is invertible, and the above holds for all z, then

A= PAP™
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This is the relation that defines changes of components of a matrix A under
a linear transformation P; it is called a similarity transformation. It does
not just involve the matrix P on the left, like for vectors, but also the inverse
matrix P~1 on the right.



Chapter 5

Matrix norms

The reference for matrix norms is Lecture 3 in the textbook.
Matrix norms are useful because they give a notion of distance between
matrices:

d(A, B) = |A - BJ|.

Each notion of matrix norm gives a different way of measuring how good an
approximation is. This will be the most important application for us.

One result is quoted but not proved in the textbook: the all-important
Cauchy-Schwarz inequality. (It’s Hermann Schwarz here, not Laurent Schwartz. )

Theorem 5.1. (Cauchy-Schwarz inequality) Let x,y € C". Then
="yl < [l [ llyll,
where the norm used is the usual Euclidean, 2-norm.

Proof. Assume that y # 0, otherwise the inequality is trivial.
Consider some A € C, for which we have yet to make a choice. Then

0< flz— Myl
= (= Ay)"(z = Ay)
=x'r — \'r — 'y + Ay
=o'z — Ay — Mty + APyt
We have used z*y = y*r. Now we make a choice for A so that this quantity

is as small as possible, hence given the first inequality, as informative as
possible. Consider
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The denominator does not vanish by assumption. We substitute this value
above to obtain

] T S o

0>z'x —
y*y vy (yry)?

The last two terms cancel out, hence

*,,12
vy

After rearranging, this is
l*lyl* = 2"y,

After taking a square root, it is what we wanted to show. O



Chapter 6

Orthogonal projectors

The reference for orthogonal projectors is Lecture 6 in the textbook.

There is one proof that we have not touched upon, and which is not part
of the material. It is the one that concerns the implication “if a projector is
orthogonal, then P = P*””. (It is the part of the proof that uses the SVD.)
We only proved the converse in class, namely if P = P* we have range(P)_L
range(/ — P), which means that P is an orthogonal projector.

The topic of an isometry as a unitary matrix restricted to a certain subset
of columns is not covered in the textbook, so let us cover it here.

For a square matrix (), the relation Q*QQ = I is the definition of
being unitary, and implies that Q=! = Q*, hence implies the other relation
QR =1.

For tall-and-thin rectangular matrices, the situation is more complicated.
A matrix that satisfies Q*Q) = [ is called an isometry, because it preserves
lengths:

Q|3 = " Q* Qe = x*x = ||z[]3.
But, unless @ is square, this does not imply QQ* = I.
We can understand this phenomenon as follows. For unitary matrices,

e *Q) = I is a statement of orthogonality of the columns ¢; of @:
(Q*Q)ij = 4iq; = 0i5-
e Q" = I is a statement of resolution of the identity, or

Z%qf = 1.

49



50 CHAPTER 6. ORTHOGONAL PROJECTORS

Now if a matrix Q € C™*" with m > n is only an isometry,

e we have by definition QQ*() = I, which means that the n columns of )
are still orthonormal,

e but QQ* # I, and QQ* € C™* ™, because there are only n vectors to
draw from. Together, they cannot span the whole of C™. Instead, we
let

P=QQ =) qq.
i=1

It is easy to see that P is the orthogonal projector onto range(Q)
span{qi, ..., ¢}, because P? = QQ*QQ* = QQ* = P and P* =
(QQ")" =QQ" = P.

Example 6.1. Any m-by-n submatriz of a m-by-m unitary matriz, when
m > n, 1S an isometry. For instance,

10 1/vV2 0 1/vV3 1/V2
0 1], 0o 1], 1/v/3 0
00 1/v2 0 1/vV3 —1/V2

are all isometries.



Chapter 7
Least-squares, SVD, and QR

The reference for least-squares is Lecture 11. The reference for the SVD is
Lectures 4 and 5. The reference for QR is Lectures 7 and 8, although
we only covered Gram-Schmidt orthogonalization in Lecture 8. In class, we
made back-and-forths between Lecture 11 and the other lectures, in order to
pick up SVD and QR before applying them to least-squares.

The two applications presented in class are the following.

e The story of blood pressure as a function of age, for journalists vs.
university professors, is taken from the book Statistics with applications
in biology and geology, available for casual browsing on google books.

e The story of Gauss’s prediction of Ceres’s orbit, and his invention of
least-squares, can be read from wikipedia and other Internet sources.

In both examples, least-squares are used to solve a polynomial fitting prob-
lem. How matrices arise from these problems is well explained in the text-
book.

For the SVD, the textbook contains all the relevant material, except for
the discussion of the relationship with the four fundamental subspaces. It
goes as follows.

For A € C™*" let A =UXV™*, where U, V are unitary and ¥ is diagonal
with positive entries along the diagonal, sorted in decreasing order. Denote
the left singular vectors — the columns of U — by u;,1 < i < m, and the
right singular vectors — the columns of V' — by v;,1 < i < n. Spot the
location of the last nonzero singular values, and call it o,; we have

o> ...20.>0, Or41 = -+ = Omax(myn) = 0.

o1
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The four fundamental subspaces can be read off from the SVD of A.

By orthogonality, V*v; = e;, so XV*v; = Ye; = oje;. Therefore
Av; = 0 as soon as j > r + 1, because of the zero singular values for
j>r+1. So

{vj:r+1<j<n}C nul(A).

By a similar argument, u;UY = o;e] is zero as soon as j > 1+ 1, so

{uj :r+1<j<m}C lnull (A4).

Now any vector u; through u, can be reached by letting A act on an
appropriate vector, namely u; = AZ—; This works because o; > 0 for
j<r.So

{uj : 1 <7 <r}C range (A).

Similarly, any vector vj through v* can be obtained by letting A act
on an appropriate vector on the left — which corresponds to forming

u*

linear combinations of rows. Namely, v; = -2 A. So
J

{v; :1<j5<r}C row (A).

Since we know that the dimensions of row(A) and null(A) add up to n,
and the dimensions of range(A) and I-null(A) add up to m, these subspaces
could not possibly contain more vectors than the linear combinations of the
collections specified above, hence the inclusions are in fact equalities. The
number r emerges as the rank of A.

Notice also that the relations of orthogonality between the relevant sub-
spaces are built in the SVD.



