> #itiH s LOADING DATA ####HfHHHH##H SIS
> # Read in the data
> forbes <- read.table("forbes")
> # and now look at it
> forbes
V1 V2
1 Tb logP
2 194.5 131.79
3 194.3 131.79
4 197.9 135.02
5 198.4 135.55
6 199.4 136.46
7 199.9 136.83
8 200.9 137.82
9 201.1 138.00
10 201.4 138.06
11 201.3 138.05
12 203.6 140.04
13 204.6 142.44
14 209.5 145.47
15 208.6 144.34
16 210.7 146.30
17 211.9 147.54
18 212.2 147.80

> # Try reading in the data while recognizing the headers
> forbes <- read.table("forbes", header=T)
> # and now look at it.
> forbes
Tb logP

1 194.5 131.79
2 194.3 131.79
3 197.9 135.02

... (these dots mean that more output was given, I'm just saving space)

#

Note: a slick way to load data posted online is

data <- read.table("http://webaddressofdata", header = T)

#

We can now reference the colums of 'forbes' using the headers.

forbes$Tb
[1] 194.5 194.3 197.9 198.4 199.4 199.9 200.9 201.1 201.4 201.3 203.6 204.6 209.5
[14] 208.6 210.7 211.9 212.2
> forbes$logP

[1] 131.79 131.79 135.02 135.55 136.46 136.83 137.82 138.00 138.06 138.05 140.04
[12] 142.44 145.47 144.34 146.30 147.54 147.80
> # If we 'attach' the object forbes, we won't have to use the $
> attach(forbes)
> # Now reference the columns by name
> Tb
[1] 194.5 194.3 197.9 198.4 199.4 199.9 200.9 201.1 201.4 201.3 203.6 204.6 209.5
[14] 208.6 210.7 211.9 212.2
> #t# R MANIPULATING DATA ###########H# I
> # First you can learn more about the data using the summary command
> summary(forbes)
Tb logP

Min. :194.3 Min. 1131,
1st Qu.:199.4 1st Qu.:136.
Median :201.3 Median :138.
Mean :203.0 Mean :139.
3rd Qu.:208.6 3rd Qu.:144.
Max. :212.2 Max. :147.
> and the attribute command
> attributes(forbes)
$names

VVVVVYV.

o WO Ul

[1] "Tb" lllOgP"

$class
[1] "data.frame"

$row.names

[13 ™" "2 “3" "4" o "5moUe" oty oo"g" o "o" "1™ "11" "12" "13" "14" "15"
[16] "16" "17"
> # We can access just the second column of 'forbes'.
> forbes[,2]

[1] 131.79 131.79 135.02 135.55 136.46 136.83 137.82 138.00 138.06 138.05 140.04
[12] 142.44 145.47 144.34 146.30 147.54 147.80
> # or just the third row
> forbes[3,]

Tb logP

3 197.9 135.02
> # or just the second element of the column 'Tb'

> Tb[[2]]
[1] 194.3
> # Note: there are no scalars in R, hence the value returned
> # above is a vector of dim [1]. Also, the above manipulations
> # were just to show the use of the ',' operator.
> # Since 'forbes' is a data.frame, we normally access its
> # columns using the column names, Tb, logP, as shown previously.
> #
> # We can make a subset of the forbes data
> forbes.highT <- data.frame(forbes[Tb >= 200,])
> # The comma after 200 brings the corresponding values of logP
> # into the new data.frame
> forbes.highT
Tb logP
7 200.9 137.82
8 201.1 138.00
9 201.4 138.06

16 211.9 147.54
17 212.2 147.80
> # Convert the temperature to Kelvin
> Tb_Kelv <- (5/9) * (Tb - 32) + 273
> # To add the temperature in Kelvin to the forbes data
> # first we make the vector Tb_Kelv into a data.frame
> Tb_Kelv <- data.frame(Tb_Kelv)
> # Now use cbind to combine the two data frames
> forbes.expanded <- cbind(forbes,Tb_Kelv)
> forbes.expanded
Tb logP Tb_Kelv

194.5 131.79 363.2778

194.3 131.79 363.1667

197.9 135.02 365.1667

198.4 135.55 365.4444

199.4 136.46 366.0000

uls wmN R

Rename the last column to "Tk"
attr(forbes.expanded, "names") <-c("Tb","logP","Tk")
> forbes.expanded

Tb logP Tk
194.5 131.79 363.2778
194.3 131.79 363.1667
197.9 135.02 365.1667

vV V -

wN -

We are starting to see how R treats vectors.
To make a 'list'use the concatenate command c().
> # Above we made a list of names.

vV V -

> # Below we make a list of numbers (i.e. a vector).
> v <- c(1,1,2,2,3,0)
> v
[11112230
> v[[3]]
[1] 2
> # R does vector math.
> # Here's an example of element by element multiplication
> T_sq=Tb * Tb
> T_sq
[1] 37830.25 37752.49 39164.41 39362.56 39760.36 39960.01 40360.81 40441.21
[9] 40561.96 40521.69 41452.96 41861.16 43890.25 43513.96 44394.49 44901.61
[17] 45028.84
> # and here's an example of vector multiplication
> T_norm = sqrt(t(Tb) %*% Tb)
> T_norm
[,1]
[1,] 837.1135
> # t() is the transpose, though R is smart enough that
> T_norm = sqrt(Tb %*% Tb)
> # works just as well
> #
> # Arrays are made out of vectors of data, to which we assign
> # dimensions. For example, make a vector of numbers, 1 through 27.
> index <- seq(1:27)
> # Then divide this vector 'index' up into a 3x3x3 array.
> dim(index) <- c(3,3,3)
> index

[,11 [,2] [,3]
1,1 1 4 7
2,1 2 5 8
3,] 3 6 9

[,11 [,2] [,3]
[1,] 10 13 16
2,17 11 14 17
[3,7] 12 15 18

[,1] [,2] [,3]
[1,] 19 22 25
[2,1] 20 23 26
[3,1 21 24 27

> # We see that arrays are stored column by column, similar to FORTRAN
> # Finally, you can save the data you were working with and load it

> # later

save("index", file="savetest",ascii=FALSE)

rm(index)
load(file="savetest")
index()
’ ’ 1

[,11 [,2] [,3]

i,] 1 4 7
2,7 2 5 8
3, 3 6 9

B B B
> # EXAMPLE: SIMPLE LINEAR REGRESSTION
B e
> # Now suppose we would like to fit a linear model to this data.
> # We do this using the function 'lm'.
> # To regress Y on X, use Im(Y ~ X). So in our case we have
> fit <- 1m(logP ~ Tb)
> fit
Call:
Im(formula = logP ~ Tb)
Coefficients:
(Intercept) Tb

-42.1309 0.8955
> #
> # So this gave us a two parameter fit, intercept and slope.
> H#iHHH S EE RMS ERROR ####H## S S S
> # What else do we want to know about our linear model? How about the
> # residual mean square (sigma_hatA2)
> # The formula for sigma_hatA2 is
> # sigma_hatA2 = RSS / DOF
> # We could use our model to calulate the residuals, then square them,
> # then sum them.... but we don't actually need to do all that work ourselves.
> # Here's an easier way (but still not the easiest). From attributes(fit) or
> # help(lm) we learn that the residuals are already calculated for us.
> fit$resid

1 2 3 4 5 6
-0.246590305 -0.067497800 -0.061162889 0.021105848 ©.035643323 -0.042087939

> # or equivalently
> resid(fit)

1 2 3 4 5 6
-0.246590305 -0.067497800 -0.061162889 ©0.021105848 ©0.035643323 -0.042087939

> # and the DOF are stored as df.resid

> # so we can calculate the residual mean square

> sum((fit$resid)A2) / fit$df.resid

[1] ©.1435546

> #

> # While it's informative to know how to access the individual model

> # properties such as resid, df.resid, etc., there is an even easier way to calculate
> # the residual mean square. Use the 'summary' command.
>
>

#
summary(fit)
Call:
Im(formula = logP ~ Tb)
Residuals:
Min 1Q Median 3Q Max

-0.32261 -0.14530 -0.06750 ©.02111 1.35924

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) -42.13087 3.33895 -12.62 2.17e-09 ***
Tb 0.89546 0.01645 54.45 < 2e-16 ***

Signif. codes: @ “***' 9.001 “**' 9.01 "*' 0.05 "."' 0.1 ~ ' 1

Residual standard error: ©0.3789 on 15 degrees of freedom
Multiple R-Squared: 0.995, Adjusted R-squared: 0.9946
F-statistic: 2965 on 1 and 15 DF, p-value: < 2.2e-16

> # From the summary we see that the residual standard error, sigma_hat, which

> # is also often called the standard error of regression, is ©0.3789. Square

> # this to get the residual mean square.

> 0.3789A2

[1] 0.1435652

> #HH A VARTANCE ##
> # Want to know the variance of the parameters? Summary lists the Std. Error, and
> # variance is just the square of the standard error.

> # Heres a fancy way to square these parameters.

> beta_hat <- data.frame(summary(fit)$coef)

> # Using the 'data.frame' command allows us to access elements by name

> beta_hat$Std. .Error

[1] 3.33895220 0.01644562

> beta_hat.var <- beta$Std..ErrorA2

> beta_hat.var

[1] 1.114860e+01 2.704585e-04

> #

> # Now consider using analysis of variance to test the null hypothesis

> # that the intercept should be at the origin. Creat a new model, and

> # force it to go through the origin.
> fit.org <- ImC logP ~ @ + Tb)
> anova(fit.org, fit)
Analysis of Variance Table

Model 1: logP ~ @ + Tb
Model 2: logP ~ Tb
Res.Df RSS Df Sum of Sq F Pr(>F)
1 16 25.0092
2 15 2.1533 1 22.8559 159.21 2.170e-@9 ***

Signif. codes: @ “***' 9.001 “**' 0.01 "*' 0.05 *.' 0.1 ° ' 1

> # The probability that this is true is 2.17e-09, so we reject the

> # null hypothesis.

> #

A CONFIDENCE INTERVALS ###H#HHHHHHHHHHHHHHHHHHHA
What if we want to know the 95% confidence interval for the model
intercept. We just saw how to get the standard error, so now all we
need is t-test value.

<- qt(1- 0.025, fit$df.residual)

=
FH L R

2.131450

To calculate the interval bounds (lamda), first change the loaded object
detach(forbes)

attach(beta_hat)

Now caluclate the bounds as two elements of a vector c(lower,upper).
lamda_intercept <- c(Estimate[1] - t * Std..Error[1], Estimate[1] + t * Std..Error[1])
lamda_intercept

1] -49.24768 -35.01406

HHHHHIHHHH A PLOTTING ###HHAH

It's always a good idea to plot the data

attach(forbes)

plot(Tb,logP)

#

Usually it's good to look at residuals vs fitted values.

While we know how to access the residuauls (fit$resid), the plot

function recognizes 'lm' object, and will give us this, and other

plots, automatically.

> plot(fit)

Hit <Return> to see next plot:

Hit <Return> to see next plot:

Hit <Return> to see next plot:

Hit <Return> to see next plot:

> # To see how the fit matches with the data, use abline.

VVVVVVVVVM/EAVYVVVVVMEAYVY YV VYVYVYV

VVVVVVVYV\VYV

wN =

Note: abline adds a line to a prexisting plot, so you must have
already done plot(Tb, logP)
plot(Tb,logP)
abline(fit)
Add confidence intervals to the plot.
Use the function predict, in "prediction" mode. By default
it will calculate values for all of the X data in the model
you give it (see help(predict.lm)).
limits <- data.frame(predict(fit,interval="prediction"))
limits
fit lwr upr

132.0366 131.1544 132.9188

131.8575 130.9729 132.7421

135.0812 134.2315 135.9308

16 147.6176 146.7294 148.5058
17 147.8863 146.9943 148.7782

>

VVV %V V VYV

Pick out the endpoints, and make them the Y vector of the X,Y
coordinates to feed to the function 'lines'.. 1lty=2 gives

us a dotted line.
linesCc(Tb[1],Tb[17]),c(limits$lwr[1],limits$lwr[17]), lty=2)
1inesCc(Tb[1],Tb[17]),c(limits$upr[1],limitsSupr[17]), lty=2)
Add a title

title(main = "Data, fit and + 95% confidence band")
B L

(dkh, 10/03/04)

