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1. Problem 1:

(a)

Let A be a normal triangular matrix. Without the loss of generality assume that A is upper
triangular, i.e.

aill a2 N Aln
A= 0 aso ... Q2p
0 0 ... Gpn

Assume that a; # 0 for j = 2...n. Then the (1,1) element of A*A is equal to a}; +ai,+...+a?,,.
The (1,1) element of AA* is equal to a?,. Since A is normal, a?; + a3y + ... + a3, = a3, and,
therefore, a;; = 0 for j =2...n.

Now assume that ag; # 0 for j = 3...n. Using the above proven fact that a;2 = 0 we can compare
the (2,2) entries of A*A and AA* to show that all ag; =0 for j =3...n.

Similarly, proceeding row by row and comparing the diagonal entries of A*A and AA* we can see
that in order for an upper triangular A to be normal, it has to be diagonal.

Any n x n matrix A can be represented as A = UTU™*, where T is upper triangular and U is
unitary.

Assume that A is normal, then A*A = AA* and we have UT*TU* = UTT*U*, thus, T*T = TT*.
By part (a) we know that if an upper triangular matrix 7' is normal, then it is diagonal. Since
the diagonal entries of the Schur form 7" are the eigenvalues of A and T is a diagonal matrix, then
A =UTU* gives an eigenvalue decomposition of A. Thus, A has n orthogonal eigenvectors.

Now suppose A has n orthogonal eigenvectors (denote the matrix of these eigenvectors by U),
then it can be represented as A = U*DU, where D is a diagonal matrix. Then by employing the
fact that any diagonal matrix has to be normal we have A*A = U*D*UU*DU = U*D*DU =
U*DD*U =U*DUU*D*U = AA*. Thus, A is normal.

2. Chapter 25, problem 25.3:

(a)
(b)
(¢)

(a) can be obtained by a sequence of left multiplications, but not by a sequence of left- and
right-multiplication by matrices @; (examples on pp.196-197 illustrate this).

(b) can be obtained by both a sequence of left multiplications and left- and right-multiplication
by matrices Q; (again, see pp.196-197 for an example).

(c) can be obtained by a sequence of left multiplications by Q; (for example, consider a 3*3 matrix
of rank 2).

3. Chapter 27, problem 27.5:

Since A is symmetric, it has a basis of orthonormal eigenvectors q1,qsa - .. ¢m- Let A1, Ao ...\, be the
corresponding eigenvalues. Also assume that A1 is the eigenvalue that is much smaller than the others



in absolute value. The goal of the problem is to investigate what happens if \; is very close to the
shift y and A — ul is very ill-conditioned.

Let u = A1 + €, where € is very small. Then using the computations on p.95 after k inverse iterations
we have:
(A — /J,I + 5A)1Dk+1 = Vi
(A — M1 —el + (5A)’U~J;€+1 = Vg (1)

Divide both the left and the right hand sides by ||Wg+1]|:
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Therefore, if ||wg41|| is large, then vgq = Hg:ﬁ gives a good approximation of the eigenvector ¢;.

Because ¢; form a basis of R™, for some «; and 3; we have the following representations:

Vg = Z a;q;
Wgt1 = Zﬂi(h

After plugging this into (1) we have:

(A—=X\I) Zﬂi%‘ - EZ@'%‘ + 5A25z'%‘ = Zai%‘ (2)

Because (A — A1) Y. Bigi = Y. (\i — A\1)Biq; after multiplication of (2) by ¢f on the left we have:

—éﬂl + q?éAu?kH = Q1

Therefore,
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Thus,
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Hence, || Wk+1]| is large and despite ill-conditioning inverse iteration produces an accurate solution.

Note: For this problem I used Wilkinson, The algebraic eigenvalue problem, 1965.
4. Problem 4:



(a) function [lambda,v]=rayleigh_quotient(A, num_iter,starting_vector)
n=size(A);
v=starting_vector;
v=v/norm(v) ;
lambda=v’*A*v;
for i=1:num_iter
w=(A-lambda*eye (n))\v;
v=w/norm(w) ;
lambda=v’*A*v;
end;

(b) Let S = UXV* be the singular value decomposition of S. We know that Cond(S) = meig((;;
Therefore, if we fix the ratio of maximum to minimum singular value of .S to be equal to 20, and
generate the intermediate singular values and orthogonal matrices U and V randomly (for example,
by running the QR factorization on randomly generated 4 x 4 matrices to ensure orthogonality),

then Cond(S) = 20.
Example of the code:

function S=gen_s;

%generate entries in the range 2..19
randl=rand (1) *17+2;
rand2=rand (1) *17+2;

Sigma=diag([20 randl rand2 1]);
U_rand=rand(4,4);
V_rand=rand(4,4);

[U_orth, R1]=qr(U_rand);
[V_orth, R2]=qr(V_rand);
S=U_orth*Sigma*V_orth;

(¢) function speed_of_conv
%obtained by S=gen_s;
S= [-1.62886147322250 4.24469694941438 -4.08799056407617 -4.90119487824613
-6.78153604613332 8.55038958204748 3.55067404752499 -5.55946396709622
5.19316051425327 15.54586417118852 -8.43124975651081  0.25890869393220
-7.76317650562957 1.71798066224471 0.30131439216199 -6.48956716145272] ;
A=S*diag([1 2 6 301)*inv(S);
F=S;
%for lambda=1
starting_vector=[0.32708034490656; 0.47620926031277; 0.22598334525969; 0.96200619568934] ;
for num_iter=1:10
[lambda,v]=rayleigh_quotient (A,num_iter,starting_vector);
error_1_lambda(num_iter)=abs(1-lambda);
if (F(1,1)*v(1)<0) v=-v;
end;
error_1_v(num_iter)=norm(v-F(:,1)/norm(F(:,1)));
end;

%for lambda=2
starting_vector=[0.30645822520195; 0.77892558525256; 0.89534244333904; 0.25372331901581];
for num_iter=1:10

[lambda,v]=rayleigh_quotient (A,num_iter,starting_vector);



error_2_lambda(num_iter)=abs(2-lambda) ;

if (F(1,2)*v(1)<0) v=-v;

end;

error_2_v(num_iter)=norm(v-F(:,2)/norm(F(:,2)));
end;

%for lambda=6
starting_vector=[0.54423875980860; 0.55844540041460; 0.66968372236257; 0.58392692252473]
for num_iter=1:10
[lambda,v]=rayleigh_quotient (A,num_iter,starting_vector);
error_3_lambda(num_iter)=abs(6-1lambda) ;
if (F(1,3)*v(1)<0) v=-v;
end;
error_3_v(num_iter)=norm(v-F(:,3)/norm(F(:,3)));

end;

%for lambda=30
starting_vector=[0.43192792375934; 0.43609798620903; 0.22430472608039; 0.01318434025798] ;
for num_iter=1:10
[lambda,v]=rayleigh_quotient (A,num_iter,starting_vector);
error_4_lambda(num_iter)=abs(30-lambda) ;
if (F(1,4)*v(1)<0) v=-v;
end;
error_4_v(num_iter)=norm(v-F(:,4)/norm(F(:,4)));

end;

plot(1:10,logl0(error_1_lambda),1:10,logl0(error_2_lambda),1:10,logl0(error_3_lambda),1:10
plot(1:10,logl0(error_1_v),1:10,logl0(error_2_v),1:10,logl0(error_3_v),1:10,loglO(error_4_
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(d) We can deduce from the graphs that for a non-symmetric case the speed of convergence of both
eigenvalues and eigenvectors is roughly quadratic.



