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1. Chapter 21, problem 21.2 (solution adapted from Golub, Van Loan, pp.152-154):

For the proof we will use the fact that if A ∈ Cm×m has an LU -factorization A = LU and has
an upper bandwidth q and a lower bandwidth p, then U has an upper bandwidth q and L has a lower
bandwidth p (see Golub, Van Loan, p.152, theorem 4.3.1).

Now let PA = LU be the factorization computed by Gaussian elimination with partial pivoting.
P = Pn−1 . . . P1 - a product of permutation matrices. PT = [es1 . . . esn ], where s1, s2 . . . sn is a permu-
tation of 1, 2, . . . n. If si > i + p, then it follows that the leading i × i principal submatrix of PA is
singular, since (PA)ij = asi,j for j = 1 . . . si − p − 1 and si − p − 1 ≥ i. This implies that U and A
are singular, thus, we reach a contradiction. Therefore, si ≤ i + p for i = 1 . . . n, thus, PA has an up-
per bandwidth p+p = 2p. Thus, by the above mentioned fact we see that U has an upper bandwidth 2p.

Note that pivoting destroys the band structure in a sense that U ends up having a higher bandwidth,
while nothing at all can be said about the band structure of L (in fact, since L = P (Ln−1Pn−1 . . . L1P1)−1

the only thing we can say is that L contains at most p + 1 nonzero elements per column).

2. Chapter 21, problem 21.6:

For the first step of Gaussian elimination with partial pivoting, the entry of maximum modulus is a11,
therefore, no row interchange is necessary.

Let A(1) be the matrix obtained after the first step: A(1) =




a11 a12 . . . a1n

0 a
(1)
22 . . . a

(1)
2n

. . . . . . . . . . . .

0 a
(1)
n2 . . . a

(1)
nn




Let’s show that A(1) is again column diagonally dominant:

n∑

i=2,i6=j

|a(1)
ij | =

n∑

i=2,i 6=j

|aij − a1jai1

a11
|

≤
n∑

i=2,i 6=j

|aij |+
n∑

i=2,i6=j

|a1jai1

a11
|

< (|ajj | − |a1j |) +
|a1j |(|a11| − |aj1|)

|a11|
= |ajj − aj1a1j

a11
| = |a(1)

jj |,

where the second inequality and the fact that |ajj ||a11| > |a1j ||aj1| follow from the diagonal dominance
of A.
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Thus, the pivot for the second step is a
(1)
22 and, consequently, no row interchange is necessary. Similarly,

this process can be continued to show that each step of Gaussian elimination results in a strictly column
diagonally dominant matrix, therefore, the element with the maximum absolute value will be on the
diagonal and no row interchanges will take place.

3. Chapter 23, problem 23.3:

We want to see how long it takes to solve Ax = b (i.e. which solver is being used to solve the
system) depending on the structure of A (for example, if A is symmetric, symmetric positive definite,
triangular, etc.) You can find a good description of what backslash actually does depending on the
structure of A at http://www.mathworks.com.

(a) Note that A is symmetric positive definite matrix (as a remark, A is invertible with probability
1). We expect that the system is going to be solved using Cholesky factorization (the flop count
is ≈ m3

3 ).

(b) Run it just to make sure that no operating system effects are incorporated into the estimated
time for part (a).

(c) A2 is not symmetric. We expect that it is going to be solved using LU -factorization. Our guess
is confirmed by time estimate (recall that Gaussian elimination with partial pivoting takes ≈ 2m3

3
flops), which is twice as large as the time count in part (a).

(d) A3 is symmetric positive definite (note that if λ is the eigenvalue of B, then λ−σ is the eigenvalue
of B − σI). Therefore, Cholesky factorization is used to solve the system. It costs roughly m3

3
flops, which agrees with part (a).

(e) A4 is still a symmetric matrix. However, it is not positive definite since it has at least one eigen-
value which is less than zero. According to the mldivide algorithm documentation available at
http://www.mathworks.com, we can assume that because of the symmetry of A4 MATLAB at-
tempts to run Cholesky factorization first, which subsequently fails and then proceeds with the
indefinite symmetric factorization.

(f) A5 is upper triangular, thus the system is solved using back substitution - roughly m2 flops.

(g) A6 is not symmetric again. The system is solved using Gaussian elimination with partial pivoting,
which results in ≈ 2m3

3 flops.

4. Chapter 12, problem 12.2:

(a) Given n distinct points x1, x2 . . . xn and n corresponding function values f(x1), f(x2) . . . f(xn)
there exists a unique polynomial of degree n− 1 Pn(x) such that Pn(xi) = f(xi) (it is called La-

grange interpolating polynomial). Its explicit representation is: Pn(x) =
n∑

i=1

f(xi)
n∏

j=1,j 6=i

x− xj

xi − xj
.

Therefore, the entries of A are:
n∏

j=1,j 6=i

yk − xj

xi − xj
, k = 1 . . . m, i = 1 . . . n.

(b) function pr122b;
for n=2:30

m=2*n-1;
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f=1:n;
x=-1+2*(f-1)/(n-1);
f=1:m;
y=-1+2*(f-1)/(m-1);

A=ones(m,n);
for i=1:m
for j=1:n

for f=1:n
if (f~=j) A(i,j)=A(i,j)*(y(i)-x(f))/(x(j)-x(f));
end;

end;
end;
end;

array(n,1)=n;
array(n,2)=log(norm(A,inf));
array(n,3)=n*log(2)-log(exp(1)*(n-1)*log(n));

end;

plot(array(2:30,1), array(2:30,2), array(2:30,1), array(2:30,3));
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(c) Note that for our problem (12.6) is equivalent to (12.9).

function pr122c;
for n=2:30

m=2*n-1;

f=1:n;
x=-1+2*(f-1)/(n-1);
f=1:m;
y=-1+2*(f-1)/(m-1);
val=ones(n,1);

A=ones(m,n);
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for i=1:m
for j=1:n

for f=1:n
if (f~=j) A(i,j)=A(i,j)*(y(i)-x(f))/(x(j)-x(f));
end;

end;
end;
end;

array(n,1)=n;
array(n,2)=(norm(A,inf)/norm(A*val, inf));

end;

plot(array(2:30,1),log( array(2:30,2)));
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(d) Now let’s use the code of the previous problem to sketch the computed polynomial interpolation
for n = 11 and n = 30:
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5. Problem 5:

(a) We know that (I + uvT )x = b, i.e. x + uvT x = b.
Multiply the last identity by vT :

vT x =
vT b

1 + vT u
,

therefore

x +
uvT b

1 + vT u
= b,

thus

x = (I − uvT

1 + vT u
)b
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and

(I + uvT )−1 = I − uvT

1 + vT u

if vT u 6= −1.

Note that when vT u = −1 we have

(I + uvT )u = u + u(vT u) = u− u = 0,

hence 0 is the eigenvalue of I + uvT , therefore, I + uvT is singular.

(b) Using the result of part (a) we have

(A + uvT )−1 = (I + A−1uvT )−1A−1

= (I − 1
1 + vT A−1u

A−1uvT )A−1

= A−1 − 1
1 + vT A−1u

A−1uvT A−1.

(c) Having a fast solver for Ax = b means that we can easily compute x = A−1b.
If Hx = b, we have

x = H−1b = (A + uvT )b = A−1b− 1
1 + vT A−1u

A−1uvT A−1b.

Now since we know how to compute A−1b and A−1u, we can obtain the solution to the system.

(d) Note that if A is orthonormal, A−1 = AT and therefore

x = AT b− 1
1 + vT AT u

AT uvT AT b.

function x=problem5(A,u,v,b)
pr1=A’*u;
pr2=A’*b;
x=pr2-1/(1+v’*pr1)*pr1*v’*pr2;
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