
1

Conditioning of LS problems

• A is m by n and has full rank

• x is LS solution with residual r = b − Ax

• x + δx is solution to min ‖(A + δA)(x + δx) − (b + δb)‖

Conditioning of the LS problem

κLS ≤
2κ(A)

cos θ
+ tan θ · κ2(A), sin θ =

‖r‖
‖b‖



2

QR (and SVD) are backward stable; e.g. they lead a solution x̃ minimizing
‖(A + δA)x̃ − (b + δb)‖ with

max
(‖δA‖

‖A‖
,
‖δb‖
‖b‖

)
= O(εm)

It follows that the QR solution obeys

‖x̃ − x‖
‖x‖

= O(εm) · κLS



3

Normal equations are not as accurate

(AT A)x = AT b

Accuracy depends on κ(AT A) = κ2(A).

Error always bounded by κ2(A) · O(εm), not by κLS(A) · O(εm)

We expect that the normal equations can loose twice as many digits of
accuracy as QR or SVD-based methods



4

Solving normal equations is not necessarily backward stable: x̃ does not
generally minimize ‖(A + δA)x̃ − (b + δb)‖ for small δA and δb

Still, when κ(A) is small, we expect the normal equations to be as accuarte as
QR or SVD

Since solving the normal equations is the fastest way, method of choice when
A is well-conditioned



5

Stability of Least Squares Algorithms
% Problem size

n = 34; m = 4*n;

% Make singular values

j = 0:n-1;

sigma = 2.ˆ(-j);

% Make m by n matrix with prescribed singular values

X = randn(n);

[V,R] = qr(X);

X = randn(m);

[U,R] = qr(X,0);

A = U(:,1:n)*diag(sigma)*V’;

% Check conditioning

cond(A)



6

ans =

8.5899e+09

sigma(1)/sigma(n)

ans =

8.5899e+09

% Make residuals and b

x = randn(n,1);

y = A*x;

theta = 1e-6;

r = U(:,n+1);

r = tan(theta)*norm(y)*U(:,n+1);

b = y+r;



7
% Solve via QR

[Q,R] = qr(A,0);

xqr = R\(Q’*b);

norm(x - xqr)/norm(x)

ans =

2.1308e-05

% Solve via normal equations

xchol = (A’*A)\(A’*b);

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.693546e-18.

norm(x - xchol)/norm(x)

ans =

2.1772



8

% Solve via SVD

[U,S,V] = svd(A,0);

xsvd = V*(S\U’*b);

norm(x - xsvd)/norm(x)

ans =

2.1305e-05

% Matlab solve

xmat = A\b;

norm(x - xmat)/norm(x)

ans =

3.4615e-05

Matlab is not using the normal equations! Uses QR with additional pivoting.



9

Stability for well conditioned problems
% Problem size

n = 50; m = 200;

% Make matrix

A = randn(m,n);

% Check conditioning

cond(A)

ans =

2.8575

% Make b and the residuals

x = randn(n,1);

y = A*x;



10

[U,R] = qr(A);

r = U(:,(n+1):m)*randn(m-n,1);

r = r/norm(r);

b = y + norm(y)*r;



11
% Solve via QR

[Q,R] = qr(A,0);

xqr = R\(Q’*b);

norm(x - xqr)/norm(x)

ans =

8.8049e-16

% Solve via normal equations

xchol = (A’*A)\(A’*b);

norm(x - xchol)/norm(x)

ans =

1.1709e-15

% Solve via SVD



12

[U,S,V] = svd(A,0);

xsvd = V*(S\U’*b);

norm(x - xsvd)/norm(x)

ans =

2.3501e-15

% Matlab solve

xmat = A\b;

norm(x - xmat)/norm(x)

ans =

9.5215e-16



13

Stability of Householder triangularization
m = 100; n = 50; % Problem size

R = triu(randn(n)); % Make R

[Q, Junk] = qr(randn(m,n),0); % Make Q

A = Q*R; % Set A to be the product QR

[Q2, R2] = qr(A,0); % Compute the QR decomposition of A

A2 = Q2*R2;

norm(A-A2)/norm(A) % Check backward stability

ans =

9.8508e-16

Householder triangularization seems backward stable!



14

More on stability
m = 100; n = 50; % Problem size

R = triu(randn(n)); % Make R

[Q, Junk] = qr(randn(m,n),0); % Make Q

A = Q*R; % Set A to be the product QR

[Q2, R2] = qr(A,0);

norm(Q-Q2)/norm(Q)

ans =

2.0000

norm(R-R2)/norm(R)

ans =

0.2358



15

A2 = Q2*R2;

norm(A-A2)/norm(A)

ans =

6.9717e-16


