Conditioning of LS problems

- A is m by n and has full rank
- x is LS solution with residual $r = b Ax$
- $x + \delta x$ is solution to min $||(A + \delta A)(x + \delta x) (b + \delta b)||$

Conditioning of the LS problem

$$
\kappa_{LS} \leq \frac{2\kappa(A)}{\cos\theta} + \tan\theta \cdot \kappa^2(A), \qquad \sin\theta = \frac{\|r\|}{\|b\|}
$$

QR (and SVD) are backward stable; e.g. they lead a solution \tilde{x} minimizing $||(A + \delta A)\tilde{x} - (b + \delta b)||$ with

$$
\max\left(\frac{\|\delta A\|}{\|A\|},\frac{\|\delta b\|}{\|b\|}\right)=O(\epsilon_m)
$$

It follows that the QR solution obeys

$$
\frac{\|\tilde{x} - x\|}{\|x\|} = O(\epsilon_m) \cdot \kappa_{LS}
$$

Normal equations are not as accurate

$$
(A^T A)x = A^T b
$$

Accuracy depends on $\kappa(A^TA)=\kappa^2(A).$

Error always bounded by $\kappa^2(A)\cdot O(\epsilon_m)$, not by $\kappa_{LS}(A)\cdot O(\epsilon_m)$

We expect that the normal equations can loose twice as many digits of accuracy as QR or SVD-based methods

Solving normal equations is not necessarily backward stable: \tilde{x} does not generally minimize $\|(A + \delta A)\tilde{x} - (b + \delta b)\|$ for small δA and δb

Still, when $\kappa(A)$ is small, we expect the normal equations to be as accuarte as QR or SVD

Since solving the normal equations is the fastest way, method of choice when A is well-conditioned

Stability of Least Squares Algorithms

```
% Problem size
```
 $n = 34$; $m = 4*n$;

```
% Make singular values
```
 $j = 0:n-1;$ sigma = $2 \cdot (-j)$;

% Make m by n matrix with prescribed singular values

```
X = \text{randn}(n);
[V, R] = qr(X);X = \text{randn(m)};
[U, R] = qr(X, 0);A = U(:, 1:n) * diag(sigma) * V';
```
% Check conditioning

cond(A)

ans $=$

8.5899e+09

sigma(1)/sigma(n)

ans $=$

8.5899e+09

% Make residuals and b

```
x = \text{randn}(n,1);y = A \star x;theta = 1e-6;
r = U(:,n+1);r = tan(theta) * norm(y) *U(:,n+1);b = y+r;
```
% Solve via QR

```
[Q, R] = qr(A, 0);xqr = R\ (Q' *b);norm(x - xqr)/norm(x)
```
ans $=$

2.1308e-05

```
% Solve via normal equations
```

```
xchol = (A' * A) \setminus (A' * b);
Warning: Matrix is close to singular or badly scaled.
         Results may be inaccurate. RCOND = 1.693546e-18.
norm(x - xchol)/norm(x)
```
ans $=$

% Solve via SVD

```
[U, S, V] = svd(A, 0);xsvd = V*(S\U'\*b);
norm(x - xsvd)/norm(x)
```
ans $=$

2.1305e-05

% Matlab solve

xmat = $A\backslash b$; $norm(x - xmat)/norm(x)$

ans $=$

3.4615e-05

Matlab is not using the normal equations! Uses QR with additional pivoting.

Stability for well conditioned problems

- % Problem size
- $n = 50$; $m = 200$;
- % Make matrix
- $A = \text{randn}(m,n);$
- % Check conditioning

cond(A)

 $ans =$

2.8575

% Make b and the residuals

```
x = \text{randn}(n, 1);y = Ax \cdot x
```

$$
[U, R] = qr(A);
$$

\n
$$
r = U(:, (n+1):m) * randn(m-n, 1);
$$

\n
$$
r = r/norm(r);
$$

\n
$$
b = y + norm(y) * r;
$$

% Solve via QR

```
[Q, R] = qr(A, 0);xqr = R\ (Q' *b);norm(x - xqr)/norm(x)
```
ans $=$

8.8049e-16

% Solve via normal equations

 $xchol = (A' * A) \setminus (A' * b)$; $norm(x - xchol)/norm(x)$

ans $=$

1.1709e-15

% Solve via SVD

```
[U, S, V] = svd(A, 0);xsvd = V*(S\U' *b);norm(x - xsvd)/norm(x)
```
ans $=$

2.3501e-15

% Matlab solve

xmat = $A\backslash b$; $norm(x - xmat)/norm(x)$

ans $=$

9.5215e-16

Stability of Householder triangularization

```
m = 100; n = 50; \% Problem size
R = \text{triu}(\text{randn}(n)); % Make R
[Q, Junk] = qr(randn(m,n),0); % Make QA = Q \star R; \qquad \qquad \text{Set} A to be the product QR
[Q2, R2] = qr(A, 0); % Compute the QR decomposition of A
A2 = Q2 * R2;norm(A-A2)/norm(A) % Check backward stability
```
 $ans =$

9.8508e-16

Householder triangularization seems backward stable!

More on stability

 $m = 100$; $n = 50$; $\%$ Problem size $R = \text{triu}(\text{randn}(n))$; % Make R $[Q, Junk] = qr(randn(m,n),0); % Make Q$ $A = Q \star R$; $A = \star R$; $[Q2, R2] = qr(A, 0);$

```
norm(Q-Q2)/norm(Q)
```
ans $=$

2.0000

norm(R-R2)/norm(R)

ans $=$

0.2358

 $A2 = Q2 * R2;$ norm(A-A2)/norm(A)

ans =

6.9717e-16