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ACM 106a: Lecture 1

Agenda

• Introduction to numerical linear algebra

• Common problems

• First examples

• Inexact computation

• What is this course about?
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Typical numerical linear algebra problems

• Systems of linear equations: solve

Ax = b, A ∈ Rn×n

• Overdetermined system of equations (more equations than unknowns):
solve

min
x

‖Ax − b‖2, A ∈ Rn×m

• Eigenvalue problems: find λ ∈ R and x ∈ Rn s.t.

Ax = λx, A ∈ Rn×n

• Many others
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Systems of linear equations are everywhere

• Many physical phenomena can be modelled as differential equations

• Many of these equations are linear

• Examples:

– Maxwell’s equations in electromagnetism

– Heat diffusion

– Acoustic wave propagation

• Often needs to solve these equations numerically

NLA is everywhere! Even when the differential equations are nonlinear (e.g.
fluid flow)
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Example
Suppose we wish to solve

−y′′ + σy′ = f, 0 < x < 1.

• Unknown function y(x) we wish to compute

• Parameter σ and right-hand side f(x) are given

• Boundary conditions: y(0) = a, y(1) = b.

We wish to evaluate y numerically
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Possible solution

−y′′ + σy′ = f, 0 < x < 1.

Discretization:

• grid xi = i/N , i = 0, ..., N (h = 1/N )

• approximation

−y′′(xi) ∼
yi+1 − 2yi + yi−1

h2

and centered difference for the first derivative

y′(xi) ∼
yi+1 − yi−1

2h

Other choice: forward difference y′(xi) ∼ yi+1−yi

h

• Difference approximation, fi = f(xi),

−
yi+1 − 2yi + yi−1

h2
+ σ

yi+1 − yi−1

2h
= fi, 0 ≤ i < N.
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Linear system
Assume y(0) = y(1) = 0. Linear system takes the form

−
(
1 −

σh

2

)
yi+1 + 2yi −

(
1 +

σh

2

)
yi−1 = h2fi.

Solve tridiagonal system: a = 2, b = −(1 − σh/2), c = −(1 + σh/2)

a b

c
. . . . . .
. . . . . . . . .

. . . . . . b

c a





y1

y2

...

...

yN−1


= h2



f1

f2

...

...

fN−1


Many techniques are available to solve such systems efficiently
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What this course is about?

• How efficiently and accurately can we solve linear systems? (this course)

• How well does the numerical solution approximate the continuous
solution? (ACM 106b, ACM 106c)
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Other example: Maxwell’s equations
(E(x, t), H(x, t)) electromagnetic field in R3 (variable x), t ∈ R is time)

Maxwell’s equations in linear materials

∇ × E = −µ
∂B

∂t

∇ × H = J + ε
∂E

∂t
∇ · εE = ρ

∇ · µH = 0

ε is the electrical permittivity and µ is the magnetic permeability of the
material; ρ is the free electric charge density, and J the free current density

Discretize → Huge linear system to solve!
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Other example: data fitting

• We are given a set of observations (xi, yi), i = 1, . . . , n

• Would like to a fit a model, e.g.

p(x) = b0 + b1x + . . . + bmxm

• Least squares fit: find the polynomial that is ‘closest’ to the data

min
b

n∑
i=1

(yi − p(xi))2.

• Matrix-vector notation

X =


1 x1 · · · xm

1

1 x2 · · · xm
2

...
...

...

1 xn · · · xm
n

 y =


y1

y2

...

yn


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so that
n∑

i=1

(yi − p(xi))2 = ‖y − Xb‖2
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Least Squares
Gauss (1809), Legendre (1805)

min
b

‖y − Xb‖2

Least squares fit given by solution to normal equations

XT Xb = XT y

Why?

Need to solve a linear systems of equations

Important subject: (much) much more later!



12

Another theme of this course: numerical stability

• Computer arithmetic is inexact (finite memory)

• Issues arise from inexact computations

• Interested in robust and stable algorithms
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Number representation
Floating point representation

x = ±.d1 . . . ds . . . 10e

e.g.
10/3 = ±0.33 . . . 3 . . . 101

Representation in base b

x = .d1 . . . ds . . . be

Other common representation: binary representation where b = 2
10/3 in base 2?
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IEEE floating point numbers with base 2
Used in almost every computer

x = ±(.d1 . . . ds)2 · 2e

• .d1 . . . ds is the mantissa (di ∈ {0, 1}, d1 = 1 if x 6= 0)

• s is the mantissa length

• e is the exponent emin ≤ e ≤ emax

Interpretation
x = (d12−1 + d22−2 + . . . ds2−s) · 2e

• Finite set of unequispaced numbers

• Smallest positive number

xmin = 2emin−1

• Largest positive number

xmax = (1 − 2−s)2emax
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IEEE floating point standard
Single precision

s = 24, emin = −125, emax = 128

Requires 32 bits: 1 sign bit + 23 bits for mantissa + 8 bits for exponent

Double precision

s = 53, emin = −1021, emax = 1024

Requires 64 bits: 1 sign bit + 52 bits for mantissa + 11 bits for exponent

Used in almost all modern computers
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Machine precision
Definition: the machine precision of a binary floating point number system with
mantissa length s is

εM = 2−s

Example: IEEE std. double precision

εM = 2−53 ≈ 1.1 · 10−16

Interpretation: 1 + 2εM is the smallest floating point number greater than 1.
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Rounding error

• fl(x) is the floating point representation of x

• Numbers are rounded to the nearest floating point number; e.g.

fl(x) =

1 1 ≤ x < 1 + εM

1 + 2εM 1 + εM ≤ x ≤ 1 + 2εM

Gives another interpretation of εM

• Rounding error and machine precision

|fl(x) − x|
|x|

≤ εM

– machine precision bounds the relative error

– number of correct decimal digits is about 16 in IEEE double precision

– fundamental limit on accuracy of numerical computation
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Floating point arithmetic
Computations reduce to elementary operations: +, −, ×, ÷

Model for computation: roundoff error: x and y are floating point numbers and
op is one of the four basic operations

x õp y = fl(x op y)

Fundamental axiom of floating point arithmetic

x õp y = (x op y)(1 + ε)

here |ε| ≤ 2−s where results are rounded (binary number system)

Relative error
|x õp y − x op y|

|x op y|
≤ εM

Consequences

• Simple operations can be inexact

• Important to keep this in mind when designing algorithms

• Goal: robustness


