ACM 106a: Lecture 1

Agenda

¢ Introduction to numerical linear algebra
e Common problems

e First examples

e Inexact computation

e What is this course about?



Typical numerical linear algebra problems
Systems of linear equations: solve

Ax = b, A e R™™

Overdetermined system of equations (more equations than unknowns):
solve

min ||Az — b||?, A € R™™
Eigenvalue problems: find A € R and x € R" s.t.

Ax = Az, A e R™"*"

Many others



Systems of linear equations are everywhere

e Many physical phenomena can be modelled as differential equations
e Many of these equations are linear

e Examples:
- Maxwell’'s equations in electromagnetism
— Heat diffusion

— Acoustic wave propagation
e Often needs to solve these equations numerically

NLA is everywhere! Even when the differential equations are nonlinear (e.g.
fluid flow)



Example

Suppose we wish to solve
—y" + oy’ = f, 0<z<1.
e Unknown function y(x) we wish to compute
e Parameter o and right-hand side f(x) are given
e Boundary conditions: y(0) = a, y(1) = b.

We wish to evaluate y numerically



Possible solution

—y" 4+ oy’ = f, 0<x<1.

Discretization:
e gridx; =4¢/N,1=0,....,.N (h =1/N)

e approximation

Yit1 — 2Y; + Yi—1
h2

and centered difference for the first derivative

_y//(mz) ~

Yi+1 — Yi—1
2h

y'(x5) ~

Other choice: forward difference y'(x;) ~ y%‘+;l—yi

e Difference approximation, f; = f(x;),

Yi+1 — 2Yi + Yi—1 Yi+1 — Yi—1
— + o



Linear system

Assume y(0) = y(1) = 0. Linear system takes the form

oh oh 5
— 1—? Yi+1 + 2Y; — 1+7 Yi—1 = h*° f;.

Solve tridiagonal system: a =2, b = —(1 — oh/2),c = —(1 + oh/2)

(a b V(v [ A
Y2 I2

C

b

N I VY B VA

Many techniques are available to solve such systems efficiently




What this course is about?

e How efficiently and accurately can we solve linear systems? (this course)

e How well does the numerical solution approximate the continuous
solution? (ACM 106b, ACM 106c¢)



Other example: Maxwell’s equations
(E(x,t), H(x,t)) electromagnetic field in R® (variable x), t € R is time)

Maxwell's equations in linear materials

VXEz—p,a—B
ot
VXHzJ—I—ea—E
ot
V.eE=p
V.-uH =0

e IS the electrical permittivity and p is the magnetic permeability of the
material; p is the free electric charge density, and J the free current density

Discretize — HUQE linear system to solve!



Other example: data fitting

We are given a set of observations (x;,y;), 2 = 1,...,n

Would like to a fit a model, e.g.
p(x) =bg+bix+ ...+ byx™

Least squares fit: find the polynomial that is ‘closest’ to the data

n

min Z(yz — p(x;))2.

=1

Matrix-vector notation




so that

> (= p(@:)? = ly — Xb|?

10



Least Squares
Gauss (1809), Legendre (1805)

min |y — Xb||?

Least squares fit given by solution to normal equations
XTXb=XTy

Why?
Need to solve a linear systems of equations

Important subject: (much) much more later!
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Another theme of this course: numerical stability
e Computer arithmetic is inexact (finite memory)
e Issues arise from inexact computations

e Interested in robust and stable algorithms



Number representation

Floating point representation

CE::l:.dl...ds...].Oe

e.g.
10/3 = £0.33...3...10"

Representation in base b
x=.dy...ds...b°

Other common representation: binary representation where b = 2
10/3 in base 27

13



IEEE floating point numbers with base 2

Used in almost every computer
r==*+(.dy...dsg)s  2°
e .dy...dsisthe mantissa(d; € {0,1},dy, = 1if x # 0)
e s is the mantissa length

e e isthe exponent emin < € < emax

Interpretation
r=(d27 ' +dy27%+...d,27%) . 2°

e Finite set of unequispaced numbers

e Smallest positive number

Lmin — 2C€min™ 1

e Largest positive number

Tonax = (1 — 27°)28mex

14



15

IEEE floating point standard

Single precision
s =24, emin = —125, emax = 128
Requires 32 bits: 1 sign bit + 23 bits for mantissa + 8 bits for exponent
Double precision
s =53, emin = —1021, emax = 1024

Requires 64 bits: 1 sign bit + 52 bits for mantissa + 11 bits for exponent

Used in almost all modern computers
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Machine precision

Definition: the machine precision of a binary floating point number system with
mantissa length s is

ENT = 27°
Example: IEEE std. double precision

envy =222 ~1.1-1016

Interpretation: 1 + 2€j, is the smallest floating point number greater than 1.
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Rounding error

e fl(x) is the floating point representation of x
e Numbers are rounded to the nearest floating point number; e.g.

1<x<1+4+em

fl(z) =
1—|—2€M 1—|—€MSZL‘S1—|—2€M

Gives another interpretation of e,

e Rounding error and machine precision

fi@) —a| _
E

M

— machine precision bounds the relative error
— number of correct decimal digits is about 16 in IEEE double precision

- fundamental limit on accuracy of numerical computation
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Floating point arithmetic

Computations reduce to elementary operations: +, —, X, +

Model for computation: roundoff error: x and y are floating point numbers and
op is one of the four basic operations

zopy = fl(zopy)
Fundamental axiom of floating point arithmetic
zopy = (zopy)(l+e)

here |e| < 27% where results are rounded (binary number system)

Relative error ~
[zopy —zopy| _

|z op Yy

Consequences
e Simple operations can be inexact
e Important to keep this in mind when designing algorithms

e Goal: robustness



